Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FRET imaging

Abstract

Förster (or Fluorescence) Resonance Energy Transfer (FRET) is unique in generating fluorescence signals sensitive to molecular conformation, association, and separation in the 1–10 nm range. We introduce a revised photophysical framework for the phenomenon and provide a systematic catalog of FRET techniques adapted to imaging systems, including new approaches proposed as suitable prospects for implementation. Applications extending from a single molecule to live cells will benefit from multidimensional microscopy techniques, particularly those adapted for optical sectioning and incorporating new algorithms for resolving the component contributions to images of complex molecular systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parametric FRET functions.
Figure 2: The 'Michaelis-Menten' view of a fluorophore as a photon conversion catalyst or 'enzyme' (see Box 1).
Figure 3: Photochromic FRET (pcFRET).
Figure 4: Comparative sizes of common fluorophores and protein carriers used in FRET imaging.
Figure 5: Photophysical cycles including triplet state, FRET, and photobleaching.

Similar content being viewed by others

References

  1. Wieb Van Der Meer, B., Coker, G. III & Simon Chen, S.-Y. Resonance Energy Transfer: Theory and Data (VCH, New York, 1994).

    Google Scholar 

  2. Hink, M.A., Bisselin, T. & Visser, A.J. Imaging protein–protein interactions in living cells. Plant Mol. Biol. 50, 871–883 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Hoppe, A., Christensen, K. & Swanson, J.A. Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83, 3652–3664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Meyer, T. & Teruel, M.N. Fluorescence imaging of signaling networks. Trends Cell Biol. 13, 101–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Sekar, R.B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marriott, G. & Parker, I. (eds.). Biophotonics, Part A. Methods in Enzymology, vol. 360 (Academic Press, San Diego, CA, 2003).

    Google Scholar 

  10. Marriott, G. & Parker, I. (eds.). Biophotonics, Part B. Methods in Enzymology, vol. 361 (Academic Press, San Diego, CA, 2003).

    Google Scholar 

  11. Berney, C. & Danuser, G. FRET or no FRET: a quantitative comparison. Biophys. J. 84, 3992–4010 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andrews, D.L. & Demidov, A.A. (eds.). Resonance Energy Transfer (John Wiley & Sons, Chicester, UK, 1999).

    Google Scholar 

  13. Valeur, B. Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, 2002).

    Google Scholar 

  14. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Clegg, R.M. Fluorescence resonance energy transfer (FRET) in Fluorescence Imaging Spectroscopy and Microscopy (eds. Wang, X.F. & Herman, B.) 179–252 (John Wiley & Sons, New York, 1996).

    Google Scholar 

  16. Edelhoch, H., Brand, L. & Wilchek, M. Fluorescence studies with tryptophyl peptides. Isr. J. Chem. 1, 216–217 (1963).

    Google Scholar 

  17. Clegg, R.M., Holub, O. & Gohlke, C. Fluorescence lifetime-resolved imaging: measuring lifetimes in an image. Methods Enzymol. 360, 509–542 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Förster, T. Delocalized excitation and excitation transer in Modern Quantum Chemistry Part III: Action of Light and Organic Crystals (ed. Sinanoglu, O.) 93–137 (Academic Press, New York, 1965).

    Google Scholar 

  19. Volkmer, A., Subramaniam, V., Birch, D.J. & Jovin, T.M. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J. 78, 1589–1598 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Subramaniam, V., Hanley, Q.S., Clayton, A.H.A. & Jovin, T.M. Photophysics of green and red fluorescent proteins: implications for quantitative microscopy. Methods Enzymol. 360, 178–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Patterson, G.H., Piston, D.W. & Barisas, B.G. Förster distances between green fluorescent protein pairs. Anal. Biochem. 284, 438–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kuhn, H. in Physical Methods of Chemistry, vol. 1 (eds. Weissberger, A. & Rossiter, B.) 579–650 (John Wiley & Sons, New York, 1972).

    Google Scholar 

  23. Schönle, A., Hänninen, P.E. & Hell, S.W. Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann. Phys. (Leipzig) 8, 115–133 (1999).

    Article  Google Scholar 

  24. Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy (SPEM)—a novel concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599–1609 (2002).

    Article  Google Scholar 

  25. Jovin, T.M. & Arndt-Jovin, D.J. FRET microscopy: digital imaging of fluorescence resonance energy transfer. in Cell Structure and Function by Microspectrofluometry (eds. Kohen, E., Hirschberg, J.G. & Ploem, J.S.) 99–117 (Academic Press, London, 1989).

    Chapter  Google Scholar 

  26. Bastiaens, P.I.H. & Jovin, T.M. Fluorescence resonance energy transfer microscopy in Cell Biology: A Laboratory Handbook, vol. 3, edn. 2 (ed. Celis, J.E.) 136–146 (Academic Press, New York, 1998).

    Google Scholar 

  27. Giordano, L., Jovin, T.M., Irie, M. & Jares-Erijman, E.A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc. 124, 7481–7489 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Song, L., Jares-Erijman, E.A. & Jovin, T.M. A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J. Photochem. Photobiol. A 150, 177–185 (2002).

    Article  CAS  Google Scholar 

  29. Hänninen, P.E., Lehtelä, L. & Hell, S.W. Two- and multiphoton excitation of conjugate-dyes using a continuous wave laser. Optics Comm. 130, 29–33 (1996).

    Article  Google Scholar 

  30. Mekler, V.M. A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Photochem. Photobiol. 39, 615–620 (1994).

    Article  Google Scholar 

  31. Clayton, A.H.A., Hanley, Q.S., Arndt-Jovin, D.J., Subramaniam, V. & Jovin, T.M. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys. J. 83, 1631–1649 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lidke, D.S. et al. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem. Soc. Trans., 31, 1020–1027 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E.T. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Sato, M., Ozawa, T., Inukai, K., Asano, T. & Umezawa, Y. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat. Biotechnol. 20, 287–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539–545 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ozawa, T. & Umezawa, Y. Peptide assemblies in living cells. Methods for detecting protein–protein interactions. Supramol. Chem. 14, 271–280 (2002).

    Article  CAS  Google Scholar 

  38. Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed. Neuron 38, 225–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Falk, M.M. Genetic tags for labelling live cells: gap junctions and beyond. Trends Cell Biol. 12, 399–404 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Farinas, J. & Verkman, A.S. Receptor-mediated targeting of fluorescent probes in living cells. J. Biol. Chem. 274, 7603–7606 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Karlström, A. & Nygren, P.-A. Dual labeling of a binding protein allows for specific fluorescence detection of native protein. Anal. Biochem. 295, 22–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, X.Y. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Larson, D.R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Fancy, D.A. et al. Scope, limitations and mechanistic aspects of the photo-induced cross-linking of proteins by water-soluble metal complexes. Chem. Biol. 7, 697–708 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Haustein, E., Jahnz, M. & Schwille, P. Triple FRET: a tool for studying long-range molecular interactions. Chemphyschem 4, 745–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Sauer, M. Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. Angew. Chem. Int. Ed. Engl. 42, 1790–1793 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Michalet, X. & Weiss, S. Single-molecule spectroscopy and microscopy. C.R. Phys. 3, 619–644 (2002).

    Article  CAS  Google Scholar 

  51. Ishijima, A. & Yanagida, T. Single molecule nanobioscience. Trends Biochem. Sci. 26, 438–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Widengren, J., Schweinberger, E., Berger, S. & Seidel, C.A.M. Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J. Phys. Chem. A 105, 6851–6866 (2001).

    Article  CAS  Google Scholar 

  55. Rocheleau, J.V., Wiseman, P.W. & Petersen, N.O. Isolation of bright aggregate fluctuations in a multipopulation image correlation spectroscopy system using intensity subtraction. Biophys. J. 84, 4011–4022 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He, Y., Wang, G., Cox, J. & Geng, L. Two-dimensional fluorescence correlation spectroscopy with modulated excitation. Anal. Chem. 73, 2302–2309 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Hopmeier, M., Guss, W., Deussen, M., Gobel, E.O. & Mahrt, R.F. Control of the energy transfer with the optical microcavity. Int. J. Mod. Phys. B 15, 3704–3708 (2001).

    Article  CAS  Google Scholar 

  58. Shubeita, G.T., Sekatskii, S.K., Dietler, G. & Letokhov, V.S. Local fluorescent probes for the fluorescence resonance energy transfer scanning near-field optical microscopy. Appl. Phys. Lett. 80, 2625–2627 (2002).

    Article  CAS  Google Scholar 

  59. Shubeita, G.T. et al. Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. J. Microsc. 210, 274–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Sekatskii, S.K., Chergui, M. & Dietler, G. Coherent fluorescence resonance energy transfer: construction of nonlocal multiparticle entangled states and quantum computing. Europhys. Lett. 63, 21–27 (2003).

    Article  CAS  Google Scholar 

  61. Guijt-van Duijn, R.A. et al. Miniaturized analytical assays in biotechnology. Biotechnol. Adv. 21, 431–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Ziauddin, J. & Sabatini, D.M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Tramier, M. et al. Homo-FRET versus hetero-FRET to probe homodimers in living cells. Methods Enzymol. 360, 580–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Krishnan, R.V., Varma, R. & Mayor, S. Fluorescence methods to probe nanometer-scale organization of molecules in living cell membranes. J. Fluoresc. 11, 211–226 (2001).

    Article  CAS  Google Scholar 

  65. Wallrabe, H., Elangovan, M.A.B., Periasamy, A. & Barroso, M. Confocal FRET microscopy to measure clustering of ligand–receptor complexes in endocytic membranes. Biophys. J. 85, 559–571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garini, Y., Katzir, N., Cabib, D. & Buckwald, R.A. Spectral bio-imaging in Fluorescence Imaging Spectroscopy and Microscopy (eds. Wang, X.F. & Herman, B.) 87–124 (John Wiley & Sons, New York, 1996).

    Google Scholar 

  67. Jares-Erijman, E. & Jovin, T.M. Determination of DNA helical handedness by fluorescence resonance energy transfer. J. Mol. Biol. 257, 597–617 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Hiraoka, Y., Shimi, T. & Haraguchi, T. Multispectral imaging fluorescence microscopy for living cells. Cell Struct. Funct. 27, 367–374 (2002).

    Article  PubMed  Google Scholar 

  69. Elangovan, M. et al. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29, 58–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Selvin, P.R. Principles and biophysical applications of lanthanide-based probes. Annu. Rev. Biophys. Biomol. Struct. 31, 275–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Xu, Y., Piston, D.W. & Johnson, C.H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA 96, 151–156 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gadella, T.W.J. Jr., van der Krogt, G.N.M. & Bisseling, T. GFP-based FRET microscopy in living plant cells. Trends Plant Sci. 4, 287–291 (1999).

    Article  PubMed  Google Scholar 

  73. Schönle, A., Glatz, M. & Hell, S.W. Four-dimensional multiphoton microscopy with time-correlated single-photon counting. Appl. Opt. 39, 6306–6311 (2000).

    Article  PubMed  Google Scholar 

  74. Yu, W., Mantulin, W.W. & Gratton, E. Fluorescence lifetime imaging: new microscopy techniques in Emerging Tools for Single Cell Analysis (eds. Durack, G. & Robinson, J.P.) 139–173 (Wiley-Liss, New York, 2000).

    Chapter  Google Scholar 

  75. Harpur, A.G., Wouters, F.S. & Bastiaens, P.I.H. Imaging FRET between spectrally similar GFP molecules in single cells. Nat. Biotechnol. 19, 167–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Carlsson, K. & Philip, J. Theoretical investigation of the signal-to-noise-ratio for different fluorescence lifetime imaging techniques. SPIE Proc. 4622, 70–78 (2002).

    Article  Google Scholar 

  77. Elson, D.S. et al. Wide-field fluorescence lifetime imaging with optical sectioning and spectral resolution applied to biological samples. J. Mod. Opt. 49, 985–995 (2002).

    Article  Google Scholar 

  78. Gerritsen, H.C., Asselbergs, M.A.H., Agronskaia, A.V. & van Sark, W.G.J.H.M. Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J. Microsc. 206, 218–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Hanley, Q.S., Arndt-Jovin, D.J. & Jovin, T.M. Spectrally resolved fluorescence lifetime imaging microscopy. Appl. Spectrosc. 56, 155–166 (2002).

    Article  CAS  Google Scholar 

  80. Calleja, V. et al. Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem. J. 372, 33–40 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Knemeyer, J.-P., Herten, D.-P. & Sauer, M. Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy. Anal. Chem. 75, 2147–2153 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Krishnan, R.V., Saitoh, H., Terada, H., Centonze, V.E. & Herman, B. Development of a multiphoton fluorescence lifetime imaging microscopy (FLIM) system using a streak camera. Rev. Sci. Instrum. 74, 2714–2721 (2003).

    Article  CAS  Google Scholar 

  83. Siegel, J. et al. Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): imaging the rotational mobility of a fluorophore. Rev. Sci. Instrum. 74 (2003).

  84. Jovin, T.M. & Arndt-Jovin, D.J. Luminescence digital imaging microscopy. Annu. Rev. Biophys. Biophys. Chem. 18, 271–308 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Young, R.M., Arnette, J.K., Roess, D.A. & Barisas, B.G. Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics. Biophys. J. 67, 881–888 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Kenworthy, A.K. Imaging protein–protein interactions using fluorescence resonance energy transfer microscopy. Methods 24, 289–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Matkó, J., Jenei, A., Matyus, L., Ameloot, M. & Damjanovich, S. Mapping of cell surface protein-patterns by combined fluorescence anisotropy and energy transfer measurements. J. Photochem. Photobiol. B 19, 71–73 (1993).

    Article  Google Scholar 

  89. Runnels, L.W. & Scarlata, S.F. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys. J. 69, 1569–1583 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yan, Y. & Marriott, G. Fluorescence resonance energy transfer imaging microscopy and fluorescence polarization imaging microscopy. Methods Enzymol. 360, 561–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Buehler, C., Dong, C.Y., So, P.T.C., French, T. & Gratton, E. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy. Biophys. J. 79, 536–549 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mathies, R.A., Peck, K. & Stryer, L. Optimization of high-sensitivity fluorescence detection. Anal. Chem. 62, 1786–1791 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Dunn, G.A., Dobbie, I.M., Monypenny, J., Holt, M.R. & Zicha, D. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microsc. 205, 109–112 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.A.J.-E. is indebted to the Agencia Nacional de Promoción de la Ciencia y Tecnología (ANPCyT), Fundación Antorchas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Secretaría de Ciencia, Tecnología e Innovación Productiva (SECyT) and the Universidad de Buenos Aires (UBA) for financial support. T.M.J. was supported by the Max Planck Society, European Union FP5 Projects QLG1-2000-01260 and QLG2-CT-2001-02278, and the Center of the Molecular Physiology of the Brain funded by the German Research Council (DFG). The authors were the recipients of a joint grant from the Volkswagen Foundation for their work on photochromic compounds and acknowledge the contribution of graduate student Luciana Giordano to the research depicted in Figure 4, as well as the efforts of many colleagues over the years in the general area represented by this review. They are also indebted professionally and personally for the inspiration offered by the late Gregorio Weber, the acknowledged father of fluorescence in biology. We thank Rainer Heintzmann, Pedro Aramendía, Carla Spagnuolo and Vinod Subramaniam for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jares-Erijman, E., Jovin, T. FRET imaging. Nat Biotechnol 21, 1387–1395 (2003). https://doi.org/10.1038/nbt896

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing