Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alternative splicing in disease and therapy

Abstract

Alternative splicing is the major source of proteome diversity in humans and thus is highly relevant to disease and therapy. For example, recent work suggests that the long-sought-after target of the analgesic acetaminophen is a neural-specific, alternatively spliced isoform of cyclooxygenase 1 (COX-1). Several important diseases, such as cystic fibrosis, have been linked with mutations or variations in either cis-acting elements or trans-acting factors that lead to aberrant splicing and abnormal protein production. Correction of erroneous splicing is thus an important goal of molecular therapies. Recent experiments have used modified oligonucleotides to inhibit cryptic exons or to activate exons weakened by mutations, suggesting that these reagents could eventually lead to effective therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cis-acting elements that control splicing.

Bob Crimi

Figure 2: Mutations in the MAPT gene that affect 4R/3R ratio.

Bob Crimi

Figure 3: Alternative splicing and therapy.

Bob Crimi

Similar content being viewed by others

References

  1. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Blanco, M.A., Ghosh, S. & Lindsey-Boltz, L.A. The phosphoryl transfer reactions in pre-messenger RNA splicing. in RNA. (eds. Soll, D., Nishimura, S. & Moore, P.B.) 109–123 (Pergamon, Amsterdam, 2001).

    Chapter  Google Scholar 

  4. Jurica, M.S. & Moore, M.J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Nilsen, T.W. The spliceosome: the most complex macromolecular machine in the cell? Bioessays 25, 1147–1149 (2003).

    Article  PubMed  Google Scholar 

  6. Modrek, B. & Lee, C.J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat. Genet. 34, 177–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, J.M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Sorek, R., Shamir, R. & Ast, G. How prevalent is functional alternative splicing in the human genome? Trends Genet. 20, 68–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Resch, A. et al. Assessing the impact of alternative splicing on domain interactions in the human proteome. J. Proteome Res. 3, 76–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Caceres, J.F. & Kornblihtt, A.R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Faustino, N.A. & Cooper, T.A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Musunuru, K. Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc. Med. 13, 188–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Roca, X., Sachidanandam, R. & Krainer, A.R. Intrinsic differences between authentic and cryptic 5′ splice sites. Nucleic Acids Res. 31, 6321–6333 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldstrohm, A.C., Greenleaf, A.L. & Garcia-Blanco, M.A. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 277, 31–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Burge, C.B., Padgett, R.A. & Sharp, P.A. Evolutionary fates and origins of U12-type introns. Mol. Cell. 2, 773–785 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Lim, L.P. & Burge, C.B. A computational analysis of sequence features involved in recognition of short introns. Proc. Natl. Acad. Sci. USA 98, 11193–11198 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patel, A.A. & Steitz, J.A. Splicing double: insights from the second spliceosome. Nat. Rev. Mol. Cell. Biol. 4, 960–970 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Fairbrother, W.G., Yeh, R.F., Sharp, P.A. & Burge, C.B. Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Cartegni, L., Wang, J., Zhu, Z., Zhang, M.Q. & Krainer, A.R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31, 3568–3571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fairbrother, W.G. & Chasin, L.A. Human genomic sequences that inhibit splicing. Mol. Cell. Biol. 20, 6816–6825 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, X.H., Heller, K.A., Hefter, I., Leslie, C.S. & Chasin, L.A. Sequence information for the splicing of human pre-mRNA identified by support vector machine classification. Genome Res. 13, 2637–2650 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berget, S.M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Labrador, M. & Corces, V.G. Extensive exon reshuffling over evolutionary time coupled to trans-splicing in Drosophila. Genome Res. 13, 2220–2228 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Graveley, B.R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Del Gatto-Konczak, F., Olive, M., Gesnel, M.C. & Breathnach, R. hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol. Cell Biol. 19, 251–260 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu, J., Mayeda, A. & Krainer, A.R. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol. Cell 8, 1351–1361 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Caceres, J.F., Stamm, S., Helfman, D.M. & Krainer, A.R. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265, 1706–1709 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Del Gatto-Konczak, F. et al. The RNA-binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5′ splice site. Mol. Cell Biol. 20, 6287–6299 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Del Gatto, F., Plet, A., Gesnel, M.C., Fort, C. & Breathnach, R. Multiple interdependent sequence elements control splicing of a fibroblast growth factor receptor 2 alternative exon. Mol. Cell Biol. 17, 5106–5116 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Valcarcel, J., Singh, R., Zamore, P.D. & Green, M.R. The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature 362, 171–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Horabin, J.I. & Schedl, P. Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5′ splice site. Mol. Cell Biol. 13, 7734–7746 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chou, M.Y., Underwood, J.G., Nikolic, J., Luu, M.H. & Black, D.L. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol. Cell 5, 949–957 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Wagner, E.J. & Garcia-Blanco, M.A. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell Biol. 21, 3281–3288 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Charlet, B.N. et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell 10, 45–53 (2002).

    Article  Google Scholar 

  36. Carstens, R.P., McKeehan, W.L. & Garcia-Blanco, M.A. An intronic sequence element mediates both activation and repression of rat fibroblast growth factor receptor 2 pre-mRNA splicing. Mol. Cell Biol. 18, 2205–2217 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baraniak, A.P., Lasda, E.L., Wagner, E.J. & Garcia-Blanco, M.A. A stem structure in fibroblast growth factor receptor 2 transcripts mediates cell-type-specific splicing by approximating intronic control elements. Mol. Cell Biol. 23, 9327–9337 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis, B.P., Green, R.E. & Brenner, S.E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl. Acad. Sci. USA 100, 189–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Maquat, L.E. Nonsense-mediated mRNA decay. Curr. Biol. 12, R196–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Jones, R.B. et al. The nonsense-mediated decay pathway and mutually exclusive expression of alternatively spliced FGFR2IIIb and -IIIc mRNAs. J. Biol. Chem. 276, 4158–4167 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Wagner, E.J. et al. Quantification of alternatively spliced FGFR2 RNAs using the RNA invasive cleavage assay. RNA 9, 1552–1561 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wollerton, M.C., Gooding, C., Wagner, E.J., Garcia-Blanco, M.A. & Smith, C.W. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Le Guiner, C. et al. TIA-1 and TIAR activate splicing of alternative exons with weak 5′ splice sites followed by a U-rich stretch on their own pre-mRNAs. J. Biol. Chem. 276, 40638–40646 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Stenson, P.D. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 21, 577–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Yan, G., Fukabori, Y., McBride, G., Nikolaropolous, S. & McKeehan, W.L. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol. Cell Biol. 13, 4513–4522 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Busslinger, M., Moschonas, N. & Flavell, R.A. Beta + thalassemia: aberrant splicing results from a single point mutation in an intron. Cell 27, 289–298 (1981).

    Article  CAS  PubMed  Google Scholar 

  47. Spritz, R.A. et al. Base substitution in an intervening sequence of a beta+-thalassemic human globin gene. Proc. Natl. Acad. Sci. USA 78, 2455–2459 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Helmken, C. et al. Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1. Hum. Genet. 114, 11–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Lorson, C.L., Hahnen, E., Androphy, E.J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kashima, T. & Manley, J.L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34, 460–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Singh, N.N., Androphy, E.J. & Singh, R.N. An extended inhibitory context causes skipping of exon 7 of SMN2 in spinal muscular atrophy. Biochem. Biophys. Res. Commun. 315, 381–388 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Mine, M. et al. Splicing error in E1alpha pyruvate dehydrogenase mRNA caused by novel intronic mutation responsible for lactic acidosis and mental retardation. J. Biol. Chem. 278, 11768–11772 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Maquat, L.E. et al. Processing of human beta-globin mRNA precursor to mRNA is defective in three patients with beta+-thalassemia. Proc. Natl. Acad. Sci. USA 77, 4287–4291 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rees, D.J., Rizza, C.R. & Brownlee, G.G. Haemophilia B caused by a point mutation in a donor splice junction of the human factor IX gene. Nature 316, 643–645 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. Ryther, R.C. et al. Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum. Genet. 113, 140–148 (2003).

    CAS  PubMed  Google Scholar 

  56. Millar, D.S. et al. Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. Hum. Mutat. 21, 424–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Kanadia, R.N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Gunthert, U. et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65, 13–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Daoud, R. et al. Ischemia induces a translocation of the splicing factor tra2-beta 1 and changes alternative splicing patterns in the brain. J. Neurosci. 22, 5889–5899 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boucher, R.C. in Harrison's Principles of Internal Medicine, edn. 15 (ed. Braunwald, E. et al.) 1487–1491 (McGraw-Hill, New York, 2001).

    Google Scholar 

  61. Noone, P.G. & Knowles, M.R. 'CFTR-opathies': disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2, 328–332 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rowntree, R.K. & Harris, A. The phenotypic consequences of CFTR mutations. Ann. Hum. Genet. 67, 471–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Chu, C.S., Trapnell, B.C., Curristin, S., Cutting, G.R. & Crystal, R.G. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat. Genet. 3, 151–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Teng, H. et al. Increased proportion of exon 9 alternatively spliced CFTR transcripts in vas deferens compared with nasal epithelial cells. Hum. Mol. Genet. 6, 85–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Mak, V., Jarvi, K.A., Zielenski, J., Durie, P. & Tsui, L.C. Higher proportion of intact exon 9 CFTR mRNA in nasal epithelium compared with vas deferens. Hum. Mol. Genet. 6, 2099–2107 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Larriba, S. et al. Testicular CFTR splice variants in patients with congenital absence of the vas deferens. Hum. Mol. Genet. 7, 1739–1743 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Hefferon, T.W., Broackes-Carter, F.C., Harris, A. & Cutting, G.R. Atypical 5′ splice sites cause CFTR exon 9 to be vulnerable to skipping. Am. J. Hum. Genet. 71, 294–303 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Costes, B. et al. Frequent occurrence of the CFTR intron 8 (TG)n 5T allele in men with congenital bilateral absence of the vas deferens. Eur. J. Hum. Genet. 3, 285–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Cuppens, H. et al. Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation. J. Clin. Invest. 101, 487–496 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Niksic, M., Romano, M., Buratti, E., Pagani, F. & Baralle, F.E. Functional analysis of cis-acting elements regulating the alternative splicing of human CFTR exon 9. Hum. Mol. Genet. 8, 2339–2349 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Zuccato, E., Buratti, E., Stuani, C., Baralle, F.E. & Pagani, F. An intronic polypyrimidine-rich element downstream of the donor site modulates CFTR exon 9 alternative splicing. J. Biol. Chem., published online 13 February 2004 (PMID: 14966131).

  72. Pagani, F., Buratti, E., Stuani, C. & Baralle, F.E. Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J. Biol. Chem. 278, 26580–26588 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Ou, S.H., Wu, F., Harrich, D., Garcia-Martinez, L.F. & Gaynor, R.B. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 69, 3584–3596 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Buratti, E. & Baralle, F.E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Buratti, E. et al. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 20, 1774–1784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nissim-Rafinia, M., Chiba-Falek, O., Sharon, G., Boss, A. & Kerem, B. Cellular and viral splicing factors can modify the splicing pattern of CFTR transcripts carrying splicing mutations. Hum. Mol. Genet. 9, 1771–1778 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Pagani, F. et al. Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J. Biol. Chem. 275, 21041–21047 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Chiba-Falek, O. et al. The molecular basis of disease variability among cystic fibrosis patients carrying the 3849+10 kb C→T mutation. Genomics 53, 276–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Aznarez, I., Chan, E.M., Zielenski, J., Blencowe, B.J. & Tsui, L.C. Characterization of disease-associated mutations affecting an exonic splicing enhancer and two cryptic splice sites in exon 13 of the cystic fibrosis transmembrane conductance regulator gene. Hum. Mol. Genet. 12, 2031–2040 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Nissim-Rafinia, M. & Kerem, B. Splicing regulation as a potential genetic modifier. Trends Genet. 18, 123–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Buchner, D.A., Trudeau, M. & Meisler, M.H. SCNM1, a putative RNA splicing factor that modifies disease severity in mice. Science 301, 967–969 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Van Deerlin, V.M., Gill, L.H., Farmer, J.M., Trojanowski, J.Q. & Lee, V.M. Familial frontotemporal dementia: from gene discovery to clinical molecular diagnostics. Clin. Chem. 49, 1717–1725 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Goedert, M., Wischik, C.M., Crowther, R.A., Walker, J.E. & Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl. Acad. Sci. USA 85, 4051–4055 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goedert, M., Spillantini, M.G., Potier, M.C., Ulrich, J. & Crowther, R.A. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J. 8, 393–399 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goedert, M., Spillantini, M.G., Jakes, R., Rutherford, D. & Crowther, R.A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3, 519–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Andreadis, A., Brown, W.M. & Kosik, K.S. Structure and novel exons of the human tau gene. Biochemistry 31, 10626–10633 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, G., Neve, R.L. & Kosik, K.S. The microtubule binding domain of tau protein. Neuron 2, 1615–1624 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Goedert, M. & Jakes, R. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J. 9, 4225–4230 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Hong, M. et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282, 1914–1917 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Spillantini, M.G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl. Acad. Sci. USA 95, 7737–7741 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Goedert, M., Ghetti, B. & Spillantini, M.G. Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Their relevance for understanding the neurogenerative process. Ann. NY Acad. Sci. 920, 74–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Lynch, T. et al. Clinical characteristics of a family with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology 44, 1878–1884 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Kowalska, A. et al. A novel mutation at position +11 in the intron following exon 10 of the tau gene in FTDP-17. J. Appl. Genet. 43, 535–543 (2002).

    PubMed  Google Scholar 

  95. Grover, A., DeTure, M., Yen, S.H. & Hutton, M. Effects on splicing and protein function of three mutations in codon N296 of tau in vitro. Neurosci. Lett. 323, 33–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Tolnay, M. et al. A new case of frontotemporal dementia and parkinsonism resulting from an intron 10 +3–splice site mutation in the tau gene: clinical and pathological features. Neuropathol. Appl. Neurobiol. 26, 368–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Stanford, P.M. et al. Mutations in the tau gene that cause an increase in three repeat tau and frontotemporal dementia. Brain 126, 814–826 (2003).

    Article  PubMed  Google Scholar 

  98. D'Souza, I. et al. Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc. Natl. Acad. Sci. USA 96, 5598–5603 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gao, Q.S. et al. Complex regulation of tau exon 10, whose missplicing causes frontotemporal dementia. J. Neurochem. 74, 490–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Jiang, Z., Cote, J., Kwon, J.M., Goate, A.M. & Wu, J.Y. Aberrant splicing of tau pre-mRNA caused by intronic mutations associated with the inherited dementia frontotemporal dementia with parkinsonism linked to chromosome 17. Mol. Cell. Biol. 20, 4036–4048 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Varani, L. et al. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl. Acad. Sci. USA 96, 8229–8234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clark, L.N. et al. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc. Natl. Acad. Sci. USA 95, 13103–13107 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiang, Z. et al. Mutations in tau gene exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2 beta. J. Biol. Chem. 278, 18997–19007 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Grover, A. et al. 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J. Biol. Chem. 274, 15134–15143 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Bracco, L. & Kearsey, J. The relevance of alternative RNA splicing to pharmacogenomics. Trends Biotechnol. 21, 346–353 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Simmons, D.L. Variants of cyclooxygenase-1 and their roles in medicine. Thromb. Res. 110, 265–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Bingham, C.O. 3rd Development and clinical application of COX-2-selective inhibitors for the treatment of osteoarthritis and rheumatoid arthritis. Cleve. Clin. J. Med. (suppl. 1) 69, SI5–12 (2002).

    PubMed  Google Scholar 

  108. Chandrasekharan, N.V. et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl. Acad. Sci. USA 99, 13926–13931 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shaftel, S.S., Olschowka, J.A., Hurley, S.D., Moore, A.H. & O'Banion, M.K. COX-3: a splice variant of cyclooxygenase-1 in mouse neural tissue and cells. Brain Res. Mol. Brain Res. 119, 213–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Flower, R.J. & Vane, J.R. Inhibition of prostaglandin synthetase in brain explains the anti-pyretic activity of paracetamol (4-acetamidophenol). Nature 240, 410–411 (1972).

    Article  CAS  PubMed  Google Scholar 

  111. Heider, K.H., Kuthan, H., Stehle, G. & Munzert, G. CD44v6: a target for antibody-based cancer therapy. Cancer Immunol. Immunother. (2004).

  112. Baron-Delage, S., Abadie, A., Echaniz-Laguna, A., Melki, J. & Beretta, L. Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes. Mol. Med. 6, 957–968 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brichta, L. et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum. Mol. Genet. 12, 2481–2489 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Chang, J.G. et al. Treatment of spinal muscular atrophy by sodium butyrate. Proc. Natl. Acad. Sci. USA 98, 9808–9813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kramer, O.H. et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 22, 3411–3420 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Atweh, G.F. & Schechter, A.N. Pharmacologic induction of fetal hemoglobin: raising the therapeutic bar in sickle cell disease. Curr. Opin. Hematol. 8, 123–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Isoherranen, N., Yagen, B. & Bialer, M. New CNS-active drugs which are second-generation valproic acid: can they lead to the development of a magic bullet? Curr. Opin. Neurol. 16, 203–211 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Larsen, A.K., Escargueil, A.E. & Skladanowski, A. Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol. Ther. 99, 167–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Andreassi, C. et al. Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum. Mol. Genet. 10, 2841–2849 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Muraki, M. et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J. Biol. Chem., published on line 8 March 2004 (PMID: 15010457).

  121. Chalfant, C.E. et al. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J. Biol. Chem. 277, 12587–12595 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Auboeuf, D. et al. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc. Natl. Acad. Sci. USA 101, 2270–2274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol. 133, 467–474 (2002).

  124. Crooke, S.T. Progress in antisense technology. Annu. Rev. Med. 55, 61–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Sazani, P. & Kole, R. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J. Clin. Invest. 112, 481–486 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zamecnik, P.C. & Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 75, 280–284 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stephenson, M.L. & Zamecnik, P.C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 75, 285–288 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lacerra, G. et al. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc. Natl. Acad. Sci. USA 97, 9591–9596 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 90, 8673–8677 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vacek, M.M. et al. High-level expression of hemoglobin A in human thalassemic erythroid progenitor cells following lentiviral vector delivery of an antisense snRNA. Blood 101, 104–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Gorman, L., Suter, D., Emerick, V., Schumperli, D. & Kole, R. Stable alteration of pre-mRNA splicing patterns by modified U7 small nuclear RNAs. Proc. Natl. Acad. Sci. USA 95, 4929–4934 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. De Angelis, F.G. et al. Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Delta 48-50 DMD cells. Proc. Natl. Acad. Sci. USA 99, 9456–9461 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  133. Friedman, K.J. et al. Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J. Biol. Chem. 274, 36193–36199 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Dunckley, M.G., Manoharan, M., Villiet, P., Eperon, I.C. & Dickson, G. Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum. Mol. Genet. 7, 1083–1090 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Wilton, S.D. et al. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul. Disord. 9, 330–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Taylor, J.K., Zhang, Q.Q., Wyatt, J.R. & Dean, N.M. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat. Biotechnol. 17, 1097–1100 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Karras, J.G., Maier, M.A., Lu, T., Watt, A. & Manoharan, M. Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-alpha chain. Biochemistry 40, 7853–7859 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Kalbfuss, B., Mabon, S.A. & Misteli, T. Correction of alternative splicing of tau in frontotemporal dementia and parkinsonism linked to chromosome 17. J. Biol. Chem. 276, 42986–42993 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Sazani, P. et al. Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat. Biotechnol. 20, 1228–1233 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Mann, C.J. et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl. Acad. Sci. USA 98, 42–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Lu, Q.L. et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat. Med. 9, 1009–1014 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Villemaire, J., Dion, I., Elela, S.A. & Chabot, B. Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J. Biol. Chem. 278, 50031–50039 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Skordis, L.A., Dunckley, M.G., Yue, B., Eperon, I.C. & Muntoni, F. Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc. Natl. Acad. Sci. USA 100, 4114–4119 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cartegni, L. & Krainer, A.R. Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat. Struct. Biol. 10, 120–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Graveley, B.R. & Maniatis, T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol. Cell 1, 765–771 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Graveley, B.R., Hertel, K.J. & Maniatis, T. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J. 17, 6747–6756 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Buratti, E., Baralle, F.E. & Pagani, F. Can a 'patch' in a skipped exon make the pre-mRNA splicing machine run better? Trends Mol. Med. 9, 229–232; discussion 233–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Eperon, I.C. & Muntoni, F. Response to Buratti et al. Can a 'patch' in a skipped exon make the pre-mRNA splicing machine run better? Trends Mol. Med. 9, 233–234 (2003).

    Article  CAS  Google Scholar 

  149. Khoo, B., Akker, S.A. & Chew, S.L. Putting some spine into alternative splicing. Trends Biotechnol. 21, 328–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, Q. & Dreyfuss, G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15, 3555–3565 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Coovert, D.D. et al. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6, 1205–1214 (1997).

    Article  CAS  PubMed  Google Scholar 

  152. Mercatante, D.R., Sazani, P. & Kole, R. Modification of alternative splicing by antisense oligonucleotides as a potential chemotherapy for cancer and other diseases. Curr. Cancer Drug Targets 1, 211–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Hommel, J.D., Sears, R.M., Georgescu, D., Simmons, D.L. & DiLeone, R.J. Local gene knockdown in the brain using viral-mediated RNA interference. Nat. Med. 9, 1539–1544 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Dykxhoorn, D.M., Novina, C.D. & Sharp, P.A. Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Wall, N.R. & Shi, Y. Small RNA: can RNA interference be exploited for therapy? Lancet 362, 1401–1403 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Celotto, A.M. & Graveley, B.R. Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA 8, 718–724 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Garcia-Blanco, M.A. Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing. J. Clin. Invest. 112, 474–480 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sullenger, B.A. & Gilboa, E. Emerging clinical applications of RNA. Nature 418, 252–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Puttaraju, M., Jamison, S.F., Mansfield, S.G., Garcia-Blanco, M.A. & Mitchell, L.G. Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nat. Biotechnol. 17, 246–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, X. et al. Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nat. Biotechnol. 20, 47–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Chao, H. et al. Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing. Nat. Med. 9, 1015–1019 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Sullenger, B.A. & Cech, T.R. Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature 371, 619–622 (1994).

    Article  CAS  PubMed  Google Scholar 

  163. Watanabe, T. & Sullenger, B.A. RNA repair: a novel approach to gene therapy. Adv. Drug Deliv. Rev. 44, 109–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Rogers, C.S., Vanoye, C.G., Sullenger, B.A. & George, A.L. Jr. Functional repair of a mutant chloride channel using a trans–splicing ribozyme. J. Clin. Invest. 110, 1783–1789 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Deidda, G., Rossi, N. & Tocchini-Valentini, G.P. An archaeal endoribonuclease catalyzes cis- and trans- nonspliceosomal splicing in mouse cells. Nat. Biotechnol. 21, 1499–1504 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Roberts, R. et al. Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proc. Natl. Acad. Sci. USA 94, 13221–13226 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lu, X., Timchenko, N.A. & Timchenko, L.T. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum. Mol. Genet. 8, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Yang, L., Embree, L.J. & Hickstein, D.D. TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. Mol. Cell Biol. 20, 3345–3354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Crozat, A., Aman, P., Mandahl, N. & Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363, 640–644 (1993).

    Article  CAS  PubMed  Google Scholar 

  170. Ichikawa, H., Shimizu, K., Hayashi, Y. & Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res. 54, 2865–2868 (1994).

    CAS  PubMed  Google Scholar 

  171. Lovestone, S. et al. Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr. Biol. 4, 1077–1086 (1994).

    Article  CAS  PubMed  Google Scholar 

  172. Hernandez, F. et al. Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35. Implications for Alzheimer's disease. J. Biol. Chem. 279, 3801–3806 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Manabe, T. et al. Induced HMGA1a expression causes aberrant splicing of Presenilin-2 pre-mRNA in sporadic Alzheimer's disease. Cell Death Differ. 10, 698–708 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Miller, J.W. et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Buckanovich, R.J., Posner, J.B. & Darnell, R.B. Nova, the paraneoplastic Ri antigen, is homologous to an RNA–binding protein and is specifically expressed in the developing motor system. Neuron 11, 657–672 (1993).

    Article  CAS  PubMed  Google Scholar 

  176. Jensen, K.B. et al. Nova-1 regulates neuron–specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Chakarova, C.F. et al. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. 11, 87–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Vithana, E.N. et al. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol. Cell 8, 375–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. McKie, A.B. et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum. Mol. Genet. 10, 1555–1562 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Ma, K. et al. A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell 75, 1287–1295 (1993).

    Article  CAS  PubMed  Google Scholar 

  181. Venables, J.P. et al. RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2beta and affect splicing. Hum. Mol. Genet. 9, 685–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. Imai, H., Chan, E.K., Kiyosawa, K., Fu, X.D. & Tan, E.M. Novel nuclear autoantigen with splicing factor motifs identified with antibody from hepatocellular carcinoma. J. Clin. Invest. 92, 2419–2426 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Clark, J. et al. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 15, 2233–2239 (1997).

    Article  CAS  PubMed  Google Scholar 

  184. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article  CAS  PubMed  Google Scholar 

  185. Fomenkov, A. et al. P63 alpha mutations lead to aberrant splicing of keratinocyte growth factor receptor in the Hay-Wells syndrome. J. Biol. Chem. 278, 23906–23914 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Srivastava, S. et al. SMN2-deletion in childhood-onset spinal muscular atrophy. Am. J. Med. Genet. 101, 198–202 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ed Otto and Jean-Marc Gallo for critically reading the manuscript, and members of the Garcia-Blanco laboratory for helpful suggestions. The authors also thank Annette Kennett for help in preparing the manuscript and Candy Webster for expert work on the figures. M.A.G.-B. acknowledges support from National Institutes of Health grants RO1 GM63090 and R33 CA97502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano A Garcia-Blanco.

Ethics declarations

Competing interests

M.A.G.-B. is a founder of and consultant for Intronn, which owns and is commercializing methods described in this review.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Blanco, M., Baraniak, A. & Lasda, E. Alternative splicing in disease and therapy. Nat Biotechnol 22, 535–546 (2004). https://doi.org/10.1038/nbt964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt964

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing