Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Transduction peptides: from technology to physiology

Abstract

During the past fifteen years, a variety of peptides have been characterized for their ability to translocate into live cells. Most are efficient vectors that can internalize hydrophilic cargoes, and so provide a valuable biological (and potentially therapeutic) tool for targeting proteins into cells. Furthermore, translocation of cell-permeable peptides across the plasma membrane and their subsequent access to the cytosol, even when fused to large hydrophilic proteins, is challenging the perception of the plasma membrane as an impermeable barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cell membrane: an impermeable barrier?
Figure 2: Penetratin Cre recombines floxed sites after internalization.
Figure 3: Internalized molecules can help in deciphering genetic pathways.
Figure 4: Penetratin peptides injected in the brain accumulate preferentially in neurons.

Similar content being viewed by others

References

  1. Frankel, A.D. & Pabo, C.O. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55, 1189–1193 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Green, M. & Loewenstein, P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55, 1179–1188 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Joliot, A., Pernelle, C., Deagostini-Bazin, H. & Prochiantz, A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl Acad. Sci. USA 88, 1864–1868 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chatelin, L., Volovitch, M., Joliot, A.H., Perez, F. & Prochiantz, A. Transcription factor Hoxa-5 is taken up by cells in culture and conveyed to their nuclei. Mech. Dev. 55, 111–117 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Helland, D.E., Welles, J.L., Caputo, A. & Haseltine, W.A. Transcellular transactivation by the human immunodeficiency virus type 1 tat protein. J. Virol. 65, 4547–4549 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Joliot, A. et al. Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Curr. Biol. 8, 856–863 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Prochiantz, A. Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Prochiantz, A. & Joliot, A. Can transcription factors function as cell–cell signalling molecules? Nature Rev. Mol. Cell. Biol. 4, 6–11 (2003).

    Article  Google Scholar 

  9. Stenmark, H., Moskaug, J.O., Madshus, I.H., Sandvig, K. & Olsnes, S. Peptides fused to the amino-terminal end of diphteria toxin are translocated to the cytosol. J. Cell Biol. 113, 1025–1032 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Madshus, I., Stenmark, H., Sandvig, K. & Olsnes, S. Entry of Diphtheria toxin–Protein-A chimeras into cells. J. Biol. Chem. 266, 17446–17453 (1991).

    CAS  PubMed  Google Scholar 

  11. Elliott, G. & O'Hare, P. Intercellular trafficking and protein delivery by a herpes virus structural protein. Cell 88, 223–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, Y.Z., Yao, S.Y., Veach, R.A., Torgerson, T.R. & Hawiger, J. Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 270, 14255–14258 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Pooga, M., Hallbrink, M., Zorko, M. & Langel, U. Cell penetration by transportan. FASEB J. 12, 67–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Park, C.B., Yi, K.S., Matsuzaki, K., Kim, M.S. & Kim, S.C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl Acad. Sci. USA 97, 8245–8250 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Derossi, D., Joliot, A.H., Chassaing, G. & Prochiantz, A. The third helix of Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450 (1994).

    CAS  PubMed  Google Scholar 

  16. Perez, F. et al. Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J. Cell Sci. 102, 717–722 (1992).

    CAS  PubMed  Google Scholar 

  17. Hall, H. et al. Inhibition of FGF-stimulated phosphatidylinositol hydrolysis and neurite outgrowth by a cell-membrane permeable phosphopeptide. Curr. Biol. 6, 580–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Pooga, M. et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nature Biotechnol. 16, 857–861 (1998).

    Article  CAS  Google Scholar 

  19. Schutze-Redelmeier, M.P. et al. Introduction of exogenous antigen into the MHC Class I processing and presentation pathway by Drosophila Antennapedia homeodomain primes cytotoxic T cells in vivo. J. Immunol. 157, 650–655 (1996).

    CAS  PubMed  Google Scholar 

  20. Derossi, D. et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271, 18188–18193 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Jo, D. et al. Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nature Biotechnol. 19, 929–933 (2001).

    Article  CAS  Google Scholar 

  22. Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl Acad. Sci. USA 99, 4489–4494 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rousselle, C. et al. Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J. Pharmacol. Exp. Ther. 296, 124–131 (2001).

    CAS  PubMed  Google Scholar 

  24. Mazel, M. et al. Doxorubicin-peptide conjugates overcome multidrug resistance. Anticancer Drugs 12, 107–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Rousselle, C. et al. New advances in the transport of doxorubicin through the blood–brain barrier by a peptide vector-mediated strategy. Mol. Pharmacol. 57, 679–686 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 285, 1569–1572 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Cao, G. et al. In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. 22, 5423–5431 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Asoh, S. et al. Protection against ischemic brain injury by protein therapeutics. Proc. Natl Acad. Sci USA 99, 17107–17112 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pietersz, G.A., Li, W. & Apostolopoulos, V. A 16-mer peptide (RQIKIWFQNRRMKWKK) from antennapedia preferentially targets the Class I pathway. Vaccine 19, 1397–1405 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Fahraeus, R., Paramio, J.M., Ball, K.L., Lain, S. & Lane, D.P. Inhibition of pRb phopshorylation and cell-cycle progresion by a 20-residue peptide derived from p16CDKN2/INK4A. Curr. Biol. 6, 84–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Herbert, T.P., Fahraeus, R., Prescott, A., Lane, D.P. & Proud, C.G. Rapid induction of apoptosis mediated by peptides that bind initiation factor eIF4E. Curr. Biol. 10, 793–796 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Mainguy, G. et al. An induction gene trap for identifying a homeoprotein-regulated locus. Nature Biotechnol. 18, 746–749 (2000).

    Article  CAS  Google Scholar 

  33. Montesinos, M.L. et al. The neuronal microtubule-associated protein 1B is under homeoprotein transcriptional control. J. Neurosci. 21, 3350–3359 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vives, E., Brodin, P. & Lebleu, B. A truncated HIV-1 Tat protein basic domain translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  Google Scholar 

  36. Moskaug, J.O., Stenmark, H. & Olsnes, S. Insertion of diphteria toxin B-fragment into the plasma membrane at low pH. J. Biol. Chem. 266, 2652–2659 (1991).

    CAS  PubMed  Google Scholar 

  37. Brasseur, R. Tilted peptides: a motif for membrane destabilization (hypothesis). Mol. Membr. Biol. 17, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Berlose, J.P., Convert, O., Derossi, D., Brunissen, A. & Chassaing, G. Conformational and associative behaviors of the third helix of Antennapedia homeodomain in membrane-mimetic environments. Eur. J. Biochem. 242, 372–386 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Christiaens, B. et al. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur. J. Biochem. 269, 2918–2926 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Magzoub, M., Eriksson, L.E. & Graslund, A. Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophys Chem. 103, 271–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Dom, G. et al. Cellular uptake of Antennapedia Penetratin peptides is a two-step process in which phase transfer precedes a tryptophan-dependent translocation. Nucleic Acids Res. 31, 556–561 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Magzoub, M., Kilk, K., Eriksson, L.E., Langel, U. & Graslund, A. Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles. Biochim. Biophys. Acta. 1512, 77–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Drin, G., Demene, H., Temsamani, J. & Brasseur, R. Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry 40, 1824–1834 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Salamon, Z., Lindblom, G. & Tollin, G. Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes. Biophys J. 84, 1796–1807 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thoren, P.E., Persson, D., Karlsson, M. & Norden, B. The antennapedia peptide penetratin translocates across lipid bilayers — the first direct observation. FEBS Lett. 482, 265–268 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Drin, G. et al. Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. Eur. J. Biochem. 268, 1304–1314 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Oehlke, J. et al. Evidence for extensive and non-specific translocation of oligopeptides across plasma membranes of mammalian cells. Biochim. Biophys. Acta. 1330, 50–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Scheller, A., Wiesner, B., Melzig, M., Bienert, M. & Oehlke, J. Evidence for an amphipathicity independent cellular uptake of amphipathic cell-penetrating peptides. Eur. J. Biochem. 267, 6043–6050 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Wender, P.A. et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl Acad. Sci. USA 97, 13003–13008 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fischer, R., Waizenegger, T., Kohler, K. & Brock, R. A quantitative validation of fluorophore-labeled cell-permeable peptide conjugates: fluorophore and cargo dependence of import. Biochim. Biophys. Acta. 1564, 365–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Park, J. et al. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J. Gen. Virol. 83, 1173–1181 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Sawada, M., Hayes, P. & Matsuyama, S. Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70. Nature Cell Biol. 5, 352–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Bolton, S.J. et al. Cellular uptake and spread of the cell-permeable peptide penetratin in adult rat brain. Eur. J. Neurosci. 12, 2847–2855 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Joliot, A.H., Triller, A., Volovitch, M., Pernelle, C. & Prochiantz, A. α-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol. 3, 1121–1134 (1991).

    CAS  PubMed  Google Scholar 

  55. Hong, F.D. & Clayman, G.L. Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Cancer Res. 60, 6551–6556 (2000).

    CAS  PubMed  Google Scholar 

  56. Leifert, J.A., Holler, P.D., Harkins, S., Kranz, D.M. & Whitton, J.L. The cationic region from HIV tat enhances the cell-surface expression of epitope/MHC class I complexes. Gene Ther. 10, 2067–2073 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Lundberg, M. & Johansson, M. Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem. Biophys. Res. Commun. 291, 367–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Kramer, S.D. & Wunderli-Allenspach, H. No entry for TAT(44–57) into liposomes and intact MDCK cells: novel approach to study membrane permeation of cell-penetrating peptides. Biochim. Biophys. Acta. 1609, 161–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Perez, F. et al. Rab3A and Rab3B carboxy-terminal peptides are potent and specific inhibitor of prolactin release by rat cultured anterior pituitary cells. Mol. Endocrinol. 8, 1278–1287 (1994).

    CAS  PubMed  Google Scholar 

  60. Eguchi, A. et al. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. 276, 26204–26210 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Futaki, S. et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836–5840 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Gao, C. et al. A cell-penetrating peptide from a novel pVII-pIX phage-displayed random peptide library. Bioorg. Med. Chem. 10, 4057–4065 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Elmquist, A., Lindgren, M., Bartfai, T. & Langel, U. VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp. Cell Res. 269, 237–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Lundberg, P. et al. Cell membrane translocation of the N-terminal (1–28) part of the prion protein. Biochem. Biophys. Res. Commun. 299, 85–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Klump, H. et al. Retroviral vector-mediated expression of HoxB4 in hematopoietic cells using a novel coexpression strategy. Gene Ther. 8, 811–817 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Horb, M.E., Shen, C.N., Tosh, D. & Slack, J.M. Experimental conversion of liver to pancreas. Curr. Biol. 13, 105–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Oehlke, J. et al. Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim. Biophys. Acta. 1414, 127–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Morris, M.C., Depollier, J., Mery, J., Heitz, F. & Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnol. 19, 1173–1176 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.-L. Montesinos, E. Dupont and S. Dupas for having provided some pictures from their work. The studies from our laboratories were supported by Centre National de la Recherche Scientifique, Ecole Normale Supérieure and grants from the Association Française de lutte contre les Myopathies (no. 7702), the Human Frontier Research Program (RGP26/2002) and the European Community (HPRN-CT-2001-00241).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joliot, A., Prochiantz, A. Transduction peptides: from technology to physiology. Nat Cell Biol 6, 189–196 (2004). https://doi.org/10.1038/ncb0304-189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0304-189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing