Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UDP–sugar transporter implicated in glycosylation and processing of Notch

Abstract

Glycosylation modifies protein activities in various biological processes. Here, we report the functions of a novel UDP–sugar transporter (UST74C, an alternative name for Fringe connection (Frc)) localized to the Golgi apparatus in cellular signalling of Drosophila. Mutants in the frc gene exhibit phenotypes resembling wingless and Notch mutants. Both Fringe-dependent and Fringe-independent Notch pathways are affected, and both glycosylation and proteolytic maturation of Notch are defective in mutant larvae. The results suggest that changes in nucleotide–sugar levels can differently affect Wingless and two distinct aspects of Notch signalling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The frc gene encodes a UDP–sugar transporter.
Figure 2: Phenotypes of frcR29 homozygous embryos generated from frcR29 mutant ovary.
Figure 3: Post-embryonic phenotypes of frc mutants.
Figure 4: Involvement of frc in the Notch pathway.
Figure 5: The frc mutation specifically affects glycosylation of Notch in larvae.
Figure 6: Intracellular transport and maturation of Notch.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Selleck, S. B. Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet. 16, 206–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Moloney, D. J. et al. Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J. Biol. Chem. 275, 9604–9611 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bruckner, K., Perez, L., Clausen, H. & Cohen, S. Glycosyltransferase activity of Fringe modulates Notch–Delta interactions. Nature 406, 411–415 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Munro, S. & Freeman, M. The Notch signalling regulator fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DXD. Curr. Biol. 10, 813–820 (2000).

    Article  CAS  Google Scholar 

  7. Hicks, C. et al. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nature Cell Biol. 2, 515–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch–ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Blaumueller, C. M., Qi, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Pan, D. & Rubin, G. M. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Parks, A. L., Klueg, K. M., Stout, J. R. & Muskavitch, M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373–1385 (2000).

    CAS  PubMed  Google Scholar 

  13. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signalling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Bush, G. et al. Ligand-induced signaling in the absence of furin processing of Notch1. Dev. Biol. 229, 494–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kawakita, M., Ishida, N., Miura, N., Sun-Wada, G. H. & Yoshioka, S. Nucleotide sugar transporters: elucidation of their molecular identity and its implication for future studies. J. Biochem (Tokyo) 123, 777–785 (1998).

    Article  CAS  Google Scholar 

  16. Muraoka, M., Kawakita, M. & Ishida, N. Molecular characterization of human UDP–glucuronic acid/UDP–N-acetylgalactosamine transporter, a novel sugar transporter with dual substrate specificity. FEBS Lett. 495, 87–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Hong, K., Ma, D., Beverley, S. M. & Turco, S. J. The Leishmania GDP–mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits. Biochemistry 39, 2013–2022 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Stanley, H., Botas, J. & Malhotra, V. The mechanism of Golgi segregation during mitosis is cell type-specific. Proc. Natl Acad. Sci. USA 94, 14467–14470 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chou, T. B., Noll, E. & Perrimon, N. Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359–1369 (1993).

    CAS  PubMed  Google Scholar 

  20. Bejsovec, A. & Martinez Arias, A. Roles of Wingless in patterning the larval epidermis of Drosophila. Development 113, 471–485 (1991).

    CAS  PubMed  Google Scholar 

  21. DiNardo, S., Sher, E., Heemskerk-Jongens, J., Kassis, J. A. & O' Farrell, P. H. Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature 332, 604–609 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinez-Arias, A., Baker, N. E. & Ingham, P. W. Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103, 157–170 (1988).

    CAS  PubMed  Google Scholar 

  23. Lindsley, D. L. & Zimm, G. G. The Genome of Drosophila melanogaster (Academic, 1968).

    Google Scholar 

  24. Cagan, R. L. & Ready, D. F. Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev. 3, 1099–1112 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Parody, T. R. & Muskavitch, M. A. The pleiotropic function of Delta during postembryonic development of Drosophila melanogaster. Genetics 135, 527–539 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. de Celis, J. F., Tyler, D. M., de Celis, J. & Bray, S. J. Notch signaling mediates segmentation of the Drosophila leg. Development 125, 4617–4626 (1998).

    CAS  PubMed  Google Scholar 

  27. Rauskolb, C. & Irvine, K. D. Notch-mediated segmentation and growth control of the Drosophila leg. Dev. Biol. 210, 339–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Spencer, F. A., Hoffmann, F. M. & Gelbart, W. M. Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster. Cell 28, 451–461 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Couso, J. P., Bate, M. & Martinez-Arias, A. A wingless-dependent polar coordinate system in Drosophila imaginal disc. Science 259, 484–489 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Mohler, J. Requirements for hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics 120, 1061–1072 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Doherty, D., Feger, G., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev. 10, 421–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Irvine, K. D. & Wieschaus, E. Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Toyoda, H., Kinoshita-Toyoda, A., Fox, B. & Selleck, S. B. Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J. Biol. Chem. 275, 21856–21861 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Webel, R., Menon, I., O' Tousa, J. E. & Colley, N. J. Role of asparagine-linked oligosaccharides in rhodopsin maturation and association with its molecular chaperone, NinaA. J. Biol. Chem. 275, 24752–24759 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  36. Guillen, E., Abeijon, C. & Hirschberg, C. B. The genes for the Golgi apparatus N-acetylglucosaminyltransferase and the UDP–N-acetylglucosamine transporter are contiguous in Kluyveromyces lactis. J. Biol. Chem. 274, 6641–6646 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Lubke, T., Marquardt, T., von Figura, K. & Korner, C. A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP–fucose into the Golgi. J. Biol. Chem. 274, 25986–25989 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Marquardt, T. et al. Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J. Pediatr. 134, 681–688 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  40. Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771 (1997).

    CAS  PubMed  Google Scholar 

  41. Jacobsen, T. L., Brennan, K., Martinez Arias, A. & Muskavitch, M. A. Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila. Development 125, 4531–4540 (1998).

    CAS  PubMed  Google Scholar 

  42. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  43. Goto, S., Tanimura, T. & Hotta, Y. Enhancer-trap detection of transcription patterns corresponding to the polar coordinate system in the imaginal discs of Drosophila melanogaster. Roux's Arch. Dev. Biol. 204, 378–391 (1995).

    Article  CAS  Google Scholar 

  44. Goto, S. & Hayashi, S. Specification of the embryonic limb primordium by graded activity of Decapentaplegic. Development 124, 125–132 (1997).

    CAS  PubMed  Google Scholar 

  45. O'Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Fehon, R. G. et al. Molecular interaction between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Brook, W. J. & Cohen, S. M. Antagonistic interactions between Wingless and Decapentaplegic responsible for dorsal–ventral pattern in the Drosophila leg. Science 273, 1373–1377 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Blochlinger, K., Bodmer, R., Jan, L. Y. & Jan, Y. N. Patterns of expression of Cut, a protein required for external sensory organ development in wild-type and cut mutant Drosophila embryos. Genes Dev. 4, 1322–1331 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Williams, J. A., Bell, J. B. & Carroll, S. B. Control of Drosophila wing and haltere development by the nuclear vestigial gene product. Genes Dev. 5, 2481–2495 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Harlow, E. & Lane, D. Antibodies. A Laboratory Manual (Cold Spring Harbor Laboratory, 1988).

    Google Scholar 

  51. Selva, E. M. et al. Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. Nature Cell Biol. 3, 809–815 (2001) (this issue).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Artavanis-Tsakonas, M. Freeman, Y. Hiromi, K. Irvine, Y.-N. Jan, A. Martinez-Arias, K. Matsuno, the Bloomington Stock Center, the Developmental Studies Hybridoma Bank and Umea Stock Center for antibodies and flies. We also thank Y. Hiromi, M. Iwanami, R. Kannagi, T. Saito, H. Segawa, H. Takeuchi, N. Taniguchi, H. Nakato and the members of the Invertebrate laboratory at NIG for their technical advice and critical comments. This work was supported by grants to S.G. and S.H. from the Ministry of Education, Science, Sports and Culture, and to S.H. from the Japan Society for the Promotion of Sciences (Research for the Future).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Goto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, S., Taniguchi, M., Muraoka, M. et al. UDP–sugar transporter implicated in glycosylation and processing of Notch. Nat Cell Biol 3, 816–822 (2001). https://doi.org/10.1038/ncb0901-816

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0901-816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing