Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Borg proteins control septin organization and are negatively regulated by Cdc42

Abstract

The Cdc42 GTPase binds to numerous effector proteins that control cell polarity, cytoskeletal remodelling and vesicle transport. In many cases the signalling pathways downstream of these effectors are not known. Here we show that the Cdc42 effectors Borg1 to Borg3 bind to septin GTPases. Endogenous septin Cdc10 and Borg3 proteins can be immunoprecipitated together by an anti-Borg3 antibody. The ectopic expression of Borgs disrupts normal septin organization. Cdc42 negatively regulates this effect and inhibits the binding of Borg3 to septins. Borgs are therefore the first known regulators of mammalian septin organization and provide an unexpected link between the septin and Cdc42 GTPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Borgs interact directly with septins.
Figure 2: Borg3 binds septins via its BD3 domain.
Figure 3: Detection of Borg3–septin interaction in vivo by immunoblotting.
Figure 4: Localization of endogenous septins in MDCK epithelial cells by indirect immunofluorescence microscopy.
Figure 5: Borg3 controls the organization status of septins in MDCK cells.
Figure 6: Cdc42-GTP negatively regulates binding of Borg3 to septins.
Figure 7: Ectopic expression of activated Cdc42 causes a loss of septin filaments.

Similar content being viewed by others

References

  1. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    Article  CAS  Google Scholar 

  2. Richman, T. J., Sawyer, M. M. & Johnson, D. I. The Cdc42p GTPase is involved in a G2/M morphogenetic checkpoint regulating the apical-isotropic switch and nuclear division in yeast. J. Biol. Chem. 274, 16861–16870 (1999).

    Article  CAS  Google Scholar 

  3. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  Google Scholar 

  4. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  5. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

    Article  CAS  Google Scholar 

  6. Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac Gtpases. J. Biol. Chem. 270, 29071–29074 (1995).

    Article  CAS  Google Scholar 

  7. Joberty, G., Perlungher, R. R. & Macara, I. G. The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Mol. Cell. Biol. 19, 6585–6597 (1999).

    Article  CAS  Google Scholar 

  8. Hirsch, D. S., Pirone, D. M. & Burbelo, P. D. A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes. J. Biol. Chem. 276, 875–883 (2001).

    Article  CAS  Google Scholar 

  9. Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77, 371–379 (1994).

    Article  CAS  Google Scholar 

  10. Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 11, 1535–1547 (1997).

    Article  CAS  Google Scholar 

  11. Takizawa, P. A., DeRisi, J. L., Wilhelm, J. E. & Vale, R. D. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341–344 (2000).

    Article  CAS  Google Scholar 

  12. Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5, 841–851 (2000).

    Article  CAS  Google Scholar 

  13. Trimble, W. S. Septins: a highly conserved family of membrane-associated GTPases with functions in cell division and beyond. J. Membrane Biol. 169, 75–81 (1999).

    Article  CAS  Google Scholar 

  14. Field, C. M. & Kellogg, D. Septins: cytoskeletal polymers or signalling GTPases?. Trends Cell Biol. 9, 387–394 (1999).

    Article  CAS  Google Scholar 

  15. Kartmann, B. & Roth, D. Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J. Cell Sci. 114, 839–844 (2001).

    CAS  PubMed  Google Scholar 

  16. Kalikin, L. M., Sims, H. L. & Petty, E. M. Genomic and expression analyses of alternatively spliced transcripts of the MLL septin-like fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. Genomics 63, 165–172 (2000).

    Article  CAS  Google Scholar 

  17. McKie, J. M., Sutherland, H. F., Harvey, E., Kim, U. J. & Scambler, P. J. A human gene similar to Drosophila melanogaster peanut maps to the DiGeorge syndrome region of 22q11. Hum. Genet. 101, 6–12 (1997).

    Article  CAS  Google Scholar 

  18. Osaka, M., Rowley, J. D. & Zeleznik-Le, N. J. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc. Natl Acad. Sci. USA 96, 6428–6433 (1999).

    Article  CAS  Google Scholar 

  19. Megonigal, M. D. et al. t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc. Natl Acad. Sci. USA 95, 6413–6418 (1998).

    Article  CAS  Google Scholar 

  20. Frazier, J. A. et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749 (1998).

    Article  CAS  Google Scholar 

  21. Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605–616 (1996).

    Article  CAS  Google Scholar 

  22. Longtine, M. S., Fares, H. & Pringle, J. R. Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J. Cell Biol. 143, 719–736 (1998).

    Article  CAS  Google Scholar 

  23. Damer, C. K., Partridge, J., Pearson, W. R. & Haystead, T. A. Rapid identification of protein phosphatase 1-binding proteins by mixed peptide sequencing and data base searching. Characterization of a novel holoenzymic form of protein phosphatase 1. J. Biol. Chem. 273, 24396–24405 (1998).

    Article  CAS  Google Scholar 

  24. Fung, E. T. & Scheller, R. H. Identification of a novel alternatively spliced septin. FEBS Lett. 451, 203–208 (1999).

    Article  CAS  Google Scholar 

  25. Hsu, S. C. et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111–1122 (1998).

    Article  CAS  Google Scholar 

  26. Kinoshita, A., Noda, M. & Kinoshita, M. Differential localization of septins in the mouse brain. J. Comp. Neurol. 428, 223–239 (2000).

    Article  CAS  Google Scholar 

  27. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a Wasp-related actin-depolymerizing protein N-Wasp. Nature 391, 93–96 (1998).

    Article  CAS  Google Scholar 

  28. Tjandra, H., Compton, J. & Kellogg, D. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Curr. Biol. 8, 991–1000 (1998).

    Article  CAS  Google Scholar 

  29. Mott, H. R. et al. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature 399, 384–388 (1999).

    Article  CAS  Google Scholar 

  30. Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott–Aldrich syndrome' protein. Nature 399, 379–383 (1999).

    Article  CAS  Google Scholar 

  31. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000).

    Article  CAS  Google Scholar 

  32. Zhao, Z. S. et al. A conserved negative regulatory region in α-Pak—inhibition of Pak kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol. Cell. Biol. 18, 2153–2163 (1998).

    Article  CAS  Google Scholar 

  33. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  34. Prehoda, K. E., Scott, J. A., Dyche Mullins, R. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N- WASP–Arp2/3 complex. Science 290, 801–806 (2000).

    Article  CAS  Google Scholar 

  35. Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    Article  CAS  Google Scholar 

  36. McKiernan, C. J., Stabila, P. F. & Macara, I. G. Role of the Rab3A-binding domain in targeting of rabphilin-3A to vesicle membranes of PC12 cells. Mol. Cell. Biol. 16, 4985–4995 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Silver for the gift of anti-GFP antibody. This work was supported by grants from the National Institutes of Health, DHHS, to I.G.M. and T.J.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gérard Joberty or Ian G. Macara.

Additional information

This PDF replaces the previous online version published on August 31 2001. Label on Figure 2c has changed from (1-150)GPS-AAA to (1-150)LVL-AAA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joberty, G., Perlungher, R., Sheffield, P. et al. Borg proteins control septin organization and are negatively regulated by Cdc42. Nat Cell Biol 3, 861–866 (2001). https://doi.org/10.1038/ncb1001-861

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing