Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial control of the actin cytoskeleton in Drosophila epithelial cells

Abstract

The actin cytoskeleton orders cellular space and transduces many of the forces required for morphogenesis. Here we combine genetics and cell biology to identify genes that control the polarized distribution of actin filaments within the Drosophila follicular epithelium. We find that profilin and cofilin regulate actin-filament formation throughout the cell cortex. In contrast, CAP—a Drosophila homologue of Adenylyl Cyclase Associated Proteins—functions specifically to limit actin-filament formation catalysed by Ena at apical cell junctions. The Abl tyrosine kinase also collaborates in this process. We therefore propose that CAP, Ena and Abl act in concert to modulate the subcellular distribution of actin filaments in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: F-actin staining reveals the cortices of cells in the egg chamber.
Figure 2: CAP regulates actin dynamics differently at opposite poles of an epithelial cell.
Figure 3: A genetic analysis of the capt F-actin phenotype.
Figure 4: Ena is a key regulator of the epithelial actin cytoskeleton.
Figure 5: Abl controls actin and cell polarity in follicle cells.
Figure 6: Ena and Abl localize together with ectopic actin filaments in capt mutant cells.
Figure 7: A model for the regulation of F-actin organization in the follicular epithelium.

Similar content being viewed by others

References

  1. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. J. Cell Sci. 113, 571–585 (2000).

    CAS  PubMed  Google Scholar 

  2. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–2019 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Lanier, L. M. & Gertler, F. B. From Abl to actin: Abl tyrosine kinase and associated proteins in growth cone motility. Curr. Opin. Neurobiol. 10, 80–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Wegner, A. Head to tail polymerization of actin. J. Mol. Biol. 108, 139–150 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Pollard, T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Actin dynamics. J. Cell Sci. 114, 3–4 (2001).

    CAS  PubMed  Google Scholar 

  8. Beckerle, M. C. Spatial control of actin filament assembly: lessons from Listeria. Cell 95, 741–748 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Laurent, V. et al. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol. 144, 1245–1258 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Machesky, L. M. & Gould, K. L. The Arp2/3 complex: a multifunctional actin organizer. Curr. Opin. Cell Biol. 11, 117–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ahern-Djamali, S. M. et al. Identification of profilin and Src homology 3 domains as binding partners for Drosophila enabled. Proc. Natl Acad. Sci. USA 96, 4977–4982 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldschmidt-Clermont, P. J. et al. The control of actin nucleotide exchange by thymosin beta 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol. Biol. Cell 3, 1015–1024 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, C. et al. Profilin enhances Cdc42-induced nucleation of actin polymerization. J. Cell Biol. 150, 1001–1012 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gieselmann, R. & Mann, K. ASP-56, a new actin sequestering protein from pig platelets with homology to CAP, an adenylate cyclase-associated protein from yeast. FEBS Lett. 298, 149–153 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Freeman, N. L., Chen, Z., Horenstein, J., Weber, A. & Field, J. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. J. Biol. Chem. 270, 5680–5685 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Amberg, D. C., Basart, E. & Botstein, D. Defining protein interactions with yeast actin in vivo. Nature Struct. Biol. 2, 28–35 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Gottwald, U., Brokamp, R., Karakesisoglou, I., Schleicher, M. & Noegel, A. A. Identification of a cyclase-associated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin. Mol. Biol. Cell 7, 261–272 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bamburg, J. R. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell. Dev. Biol. 15, 185–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Spradling, A. in The development of Drosophila melanogaster (eds Bate, M. & Arias, A. M.) 1–70 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1993).

    Google Scholar 

  20. Muller, H. A. Genetic control of epithelial cell polarity: lessons from Drosophila. Dev. Dyn. 218, 52–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Duffy, J. B., Harrison, D. A. & Perrimon, N. Identifying loci required for follicular patterning using directed mosaics. Development 125, 2263–2271 (1998).

    CAS  PubMed  Google Scholar 

  22. Sutherland, J. D. & Witke, W. Molecular genetic approaches to understanding the actin cytoskeleton. Curr. Opin. Cell Biol. 11, 142–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Baum, B., Li, W. & Perrimon, N. A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Curr. Biol. 10, 964–973 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Benlali A., Draskovic, I., Hazelett D. J. & Treisman J. E. act up controls actin polymerization to alter cell shape and restrict hedgehog signaling in the Drosophila eye disc. Cell 101, 271–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Gertler, F. B. et al. enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev. 9, 521–533 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Ahern-Djamali, S. M. et al. Mutations in Drosophila enabled and rescue by human vasodilator-stimulated phosphoprotein (VASP) indicate important functional roles for Ena/VASP homology domain 1 (EVH1) and EVH2 domains. Mol. Biol. Cell 9, 2157–2171 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freeman, N. L. et al. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization. Mol. Cell. Biol. 16, 548–556 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Comer, A. R., Ahern-Djamali, S. M., Juang, J. L., Jackson, P. D. & Hoffmann, F. M. Phosphorylation of Enabled by the Drosophila Abelson tyrosine kinase regulates the in vivo function and protein–protein interactions of Enabled. Mol. Cell. Biol. 18, 152–160 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wills, Z., Bateman, J., Korey, C. A., Comer, A. & Van Vactor, D. The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron 22, 301–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Gunsalus, K. C. et al. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J. Cell Biol. 131, 1243–1259 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Cooley, L., Verheyen, E. & Ayers, K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69, 173–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Theriot, J. A. & Mitchison, T. J. The three faces of profilin. Cell 75, 835–838 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Verheyen, E. M. & Cooley, L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 120, 717–728 (1994).

    CAS  PubMed  Google Scholar 

  35. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Reinhard, M. et al. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J. 11, 2063–2070 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goode, S. & Perrimon, N. Inhibition of patterned cell shape change and cell invasion by Discs large during Drosophila oogenesis. Genes Dev. 11, 2532–2544 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koleske, A. J. et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21, 1259–1272 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Winter, C. G. et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105, 81–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Chou, T. B. & Perrimon, N. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zak Wills, Jack Bateman, David Van Vactor and David Bilder for help throughout this project; T. Schupbach, K. Gunsalus, D. St Johnston and the Bloomington Stock Center for Drosophila stocks, and D. Brenton, M. Hoffmann and E. Knust for antibodies; and B. Stronach, S. Noselli, D. Bilder, M. Schober, D. Van Vactor, A. Kiger and F. Gertler for their comments on the manuscript. B.B. was supported by EMBO, HFSP and HHMI, and N.P. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buzz Baum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, B., Perrimon, N. Spatial control of the actin cytoskeleton in Drosophila epithelial cells. Nat Cell Biol 3, 883–890 (2001). https://doi.org/10.1038/ncb1001-883

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing