Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks

Abstract

Histone H2AX is rapidly phosphorylated in the chromatin micro-environment surrounding a DNA double-strand break (DSB). Although H2AX deficiency is not detrimental to life, H2AX is required for the accumulation of numerous essential proteins into irradiation induced foci (IRIF). However, the relationship between IRIF formation, H2AX phosphorylation (γ-H2AX) and the detection of DNA damage is unclear. Here, we show that the migration of repair and signalling proteins to DSBs is not abrogated in H2AX−/− cells, or in H2AX-deficient cells that have been reconstituted with H2AX mutants that eliminate phosphorylation. Despite their initial recruitment to DSBs, numerous factors, including Nbs1, 53BP1 and Brca1, subsequently fail to form IRIF. We propose that γ-H2AX does not constitute the primary signal required for the redistribution of repair complexes to damaged chromatin, but may function to concentrate proteins in the vicinity of DNA lesions. The differential requirements for factor recruitment to DSBs and sequestration into IRIF may explain why essential regulatory pathways controlling the ability of cells to respond to DNA damage are not abolished in the absence of H2AX.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H2AX-independent recruitment of Nbs1, 53BP1 and Brca1 to DSBs.
Figure 2: Time-dependent changes in 53BP1 staining at DSBs.
Figure 3: γ-H2AX and ATM are not required for M–R–N recruitment to DSBs.

Similar content being viewed by others

References

  1. Rouse, J. & Jackson, S.P. Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002).

    Article  CAS  Google Scholar 

  2. Nelms, B.E., Maser, R.S., MacKay, J.F., Lagally, M.G. & Petrini, J.H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 (1998).

    Article  CAS  Google Scholar 

  3. Paull, T.T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

    Article  CAS  Google Scholar 

  4. Bassing, C.H. et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl Acad. Sci. USA 99, 8173–8178 (2002).

    Article  CAS  Google Scholar 

  5. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    Article  CAS  Google Scholar 

  6. Maser, R.S., Monsen, K.J., Nelms, B.E. & Petrini, J.H. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell Biol. 17, 6087–6096 (1997).

    Article  CAS  Google Scholar 

  7. Kobayashi, J. et al. NBS1 Localizes to γ-H2AX Foci through Interaction with the FHA/BRCT Domain. Curr. Biol. 12, 1846–1851 (2002).

    Article  CAS  Google Scholar 

  8. Rappold, I., Iwabuchi, K., Date, T. & Chen, J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell Biol. 153, 613–620 (2001).

    Article  CAS  Google Scholar 

  9. Tauchi, H., Matsuura, S., Kobayashi, J., Sakamoto, S. & Komatsu, K. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 21, 8967–8980 (2002).

    Article  CAS  Google Scholar 

  10. Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  Google Scholar 

  11. Maser, R.S. et al. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell Biol. 21, 6006–6016 (2001).

    Article  CAS  Google Scholar 

  12. Mirzoeva, O.K. & Petrini, J.H. DNA damage-dependent nuclear dynamics of the mre11 complex. Mol. Cell Biol. 21, 281–288 (2001).

    Article  CAS  Google Scholar 

  13. Schultz, L.B., Chehab, N.H., Malikzay, A. & Halazonetis, T.D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 151, 1381–1390 (2000).

    Article  CAS  Google Scholar 

  14. Downs, J.A., Lowndes, N.F. & Jackson, S.P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001–1004 (2000).

    Article  CAS  Google Scholar 

  15. Burma, S., Chen, B.P., Murphy, M., Kurimasa, A. & Chen, D.J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    Article  CAS  Google Scholar 

  16. Wang, J.Y. Cancer: New link in a web of human genes. Nature 405, 404–405 (2000).

    Article  CAS  Google Scholar 

  17. Mirzoeva, O.K. & Petrini, J.H. DNA replication-dependent nuclear dynamics of the mre11 complex. Mol. Cancer Res. 1, 207–218 (2003).

    CAS  Google Scholar 

  18. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  19. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  Google Scholar 

  20. Zou, L., Cortez, D. & Elledge, S.J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198–208 (2002).

    Article  CAS  Google Scholar 

  21. Andegeko, Y. et al. Nuclear retention of ATM at sites of DNA double strand breaks. J. Biol. Chem. 276, 38224–38230 (2001).

    CAS  Google Scholar 

  22. Paull, T.T. & Gellert, M. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1, 969–979 (1998).

    Article  CAS  Google Scholar 

  23. Paull, T.T., Cortez, D., Bowers, B., Elledge, S.J. & Gellert, M. Direct DNA binding by Brca1. Proc. Natl Acad. Sci. USA 98, 6086–6091 (2001).

    Article  CAS  Google Scholar 

  24. van Gent, D.C., Hoeijmakers, J.H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet. 2, 196–206 (2001).

    Article  CAS  Google Scholar 

  25. Khanna, K.K. & Jackson, S.P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001).

    Article  CAS  Google Scholar 

  26. Fernandez-Capetillo, O. et al. DNA damage-induced G2–M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biol. 4, 993–997 (2002).

    Article  CAS  Google Scholar 

  27. Yagi, H. et al. Regulation of the mouse histone H2A.X gene promoter by the transcription factor E2F and CCAAT binding protein. J. Biol. Chem. 270, 18759–18765 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Gellert, A. Singer and R. Hodes for critical comments on the manuscript. We also thank D. Sackett for assistance, Y. Pommier and P. Leder for kindly providing the ATM-deficient cells, S. Ganesan and J. Chen for kindly providing Brca1 and 53BP1 antibodies. In addition, we also thank R. Schroff and M. Lichten for sharing unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Nussenzweig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Figure S1. IR-induced redistribution of Nbs1 from PCNA clusters is H2AX independent.

Figure S2. Typing of reconstituted P53-/-H2AX-/- cells by 2-D gel analysis of histones. (PDF 1297 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celeste, A., Fernandez-Capetillo, O., Kruhlak, M. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5, 675–679 (2003). https://doi.org/10.1038/ncb1004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing