Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

EB1 reveals mobile microtubule nucleation sites in Arabidopsis

A Corrigendum to this article was published on 01 January 2004

Abstract

In plants, it is unclear how dispersed cortical microtubules are nucleated, polarized and organized in the absence of centrosomes. In Arabidopsis thaliana cells, expression of a fusion between the microtubule-end-binding protein AtEB1a and green fluorescent protein (GFP) results in labelling of spindle poles, where minus ends gather. During interphase, AtEB1a–GFP labels the microtubule plus end as a comet, but also marks the minus end as a site from which microtubules can grow and shrink. These minus-end nucleation sites are mobile, explaining how the cortical array can redistribute during the cell cycle and supporting the idea of a flexible centrosome in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AtEB1a–GFP associates with cortical microtubules in vivo.
Figure 2: AtEB1a and plus-end dynamics.
Figure 3: Localization of AtEB1a at mitosis and cytokinesis.
Figure 4: AtEB1a labels cortical nucleation sites.
Figure 5: Motility of minus-end foci.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lambert, A.-M. & Lloyd, C.W. in Microtubules (eds Hyams, J.S. & Lloyd, C.W.) 327–341 (Alan R Liss, New York, 1994).

    Google Scholar 

  2. Schmit, A.C. Acentrosomal microtubule nucleation in higher plants. Int. Rev. Cytol. 220, 257–289 (2002).

    Article  CAS  Google Scholar 

  3. Yuan, M., Shaw, P.J., Warn, R.M. & Lloyd, C.W. Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc. Natl Acad. Sci. USA 91, 6050–6053 (1994).

    Article  CAS  Google Scholar 

  4. Granger, C.L. & Cyr, R.J. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP–MBD. Protoplasma 216, 201–214 (2001).

    Article  CAS  Google Scholar 

  5. Shaw, S.L., Kamyar, R. & Ehrhardt, D.W. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300, 1715–1718 (2003).

    Article  CAS  Google Scholar 

  6. Mazia, D. Centrosomes and mitotic poles. Exp. Cell Res. 153, 1–15 (1984).

    Article  CAS  Google Scholar 

  7. Drykova, D., Cenklova, V., Sulimenko, V., Draber, P. & Binarova, P. Plant γ-tubulin interacts with αβ dimers and form membrane-associated complexes. Plant Cell 15, 465–480 (2003).

    Article  CAS  Google Scholar 

  8. Panteris, E., Apostolakos, P., Graf, R. & Galatis, B. γ-Tubulin colocalizes with microtubule arrays and tubulin paracrystals in dividing vegetative cells of higher plants. Protoplasma 210, 179–187 (2000).

    Article  Google Scholar 

  9. Tirnauer, J.S. & Bierer, B.E. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J. Cell Biol. 149, 761–766 (2000).

    Article  CAS  Google Scholar 

  10. Tirnauer, J.S., Grego, S., Salmon, E.D. & Mitchison, T.J. EB1–microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell 13, 3614–3626 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    Article  CAS  Google Scholar 

  12. Rogers, S.L., Rogers, G.C., Sharp, D.J. & Vale, R.D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002).

    Article  CAS  Google Scholar 

  13. Korinek, W.S., Copeland, M.J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257–2259 (2000).

    Article  CAS  Google Scholar 

  14. Straube, A., Brill, M., Oakley, B.R., Horio, T. & Steinberg, G. Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear mcirotubule organizing centers in the plant pathogen Ustilago maydis. Mol. Biol. Cell 14, 642–657 (2003).

    Article  CAS  Google Scholar 

  15. Morrison, E.E., Wardleworth, B.N., Askham, J.M., Markham, A.F. & Meredith, D.M. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17, 3471–3477 (1998).

    Article  CAS  Google Scholar 

  16. Bu, W. & Su, L.K. Regulation of microtubule assembly by human EB1 family proteins. Oncogene 20, 3185–3192 (2001).

    Article  CAS  Google Scholar 

  17. Morrison, E.E. & Ashkam, J.M. EB1 immunofluorescence reveals an increase in growing astral microtubule length and number during anaphase in NRK-52E cells. Eur. J. Cell Biol. 80, 749–753 (2001).

    Article  CAS  Google Scholar 

  18. Rehberg, M. & Graf, R. Dictyostelium EB1 is a genuine centrosomal component required for proper spindle formation. Mol. Biol. Cell 13, 2301–2310 (2002).

    Article  CAS  Google Scholar 

  19. Tirnauer, J.S., O'Toole, E., Berrueta, L., Bierer, B.E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145, 993–1007 (1999).

    Article  CAS  Google Scholar 

  20. Askham, J.M., Vaughan, K.T., Goodson, H.V. & Morrison, E.E. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13, 3627–3645 (2002).

    Article  CAS  Google Scholar 

  21. Euteneuer, U. & McIntosh, J.R. Polarity of midbody and phragmoplast microtubules. Proc. Natl Acad. Sci. USA 78, 372–376 (1981).

    Article  CAS  Google Scholar 

  22. Juwana, J.P. et al. EB/RP gene family encodes tubulin binding proteins. Int. J. Cancer 81, 275–284 (1999).

    Article  CAS  Google Scholar 

  23. Dhonukshe, P. & Gadella, T.W. Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15, 597–611 (2003).

    Article  CAS  Google Scholar 

  24. Toso, R.J., Jordan, M.A., Farrell, K.W., Matsumoto, B. & Wilson, L. Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry 32, 1285–1293 (1993).

    Article  CAS  Google Scholar 

  25. Yvon, A.M., Wadsworth, P. & Jordan, M.A. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell 10, 947–959 (1999).

    Article  CAS  Google Scholar 

  26. Rusan, N.M., Fagerstrom, C.J., Yvon, A.M. & Wadsworth, P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-α-tubulin. Mol. Biol. Cell 12, 971–980 (2001).

    Article  CAS  Google Scholar 

  27. Muhua, L., Adames, N.R., Murphy, M.D., Shields, C.R. & Cooper, J.A. A cytokinesis checkpoint requiring the yeast homologue of an APC-binding protein. Nature 393, 487–491 (1998).

    Article  CAS  Google Scholar 

  28. Wood, K.W., Sakowicz, R., Goldstein, L.S. & Cleveland, D.W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357–366 (1997).

    Article  CAS  Google Scholar 

  29. Rodionov, V., Nadezhdina, E. & Borisy, G. Centrosomal control of microtubule dynamics. Proc. Natl Acad. Sci. USA 96, 115–120 (1999).

    Article  CAS  Google Scholar 

  30. Wasteneys, G.O. Microtubule organization in the green kingdom: chaos or self-order? J. Cell Sci. 115, 1345–1354 (2002).

    CAS  PubMed  Google Scholar 

  31. Hong, B. et al. Identification of a calmodulin-regulated Ca++-ATPase in the endoplasmic reticulum. Plant Physiol. 119, 1165–1176 (1999).

    Article  CAS  Google Scholar 

  32. Chan, J., Rutten, T. & Lloyd, C. Isolation of microtubule-associated proteins from carrot cytoskeletons: a 120 kDa MAP decorates all four microtubule arrays and the nucleus. Plant J. 10, 251–259 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant-in-aid from the Biotechnology and Biological Sciences Research Council to the John Innes Centre. We are grateful to B. Trevaskis of CSIRO Canberra for supplying the Gateway modified GFP vector. We thank P. Rossignol, O. Korolev and G. Roberts for assistance and M. Webb for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive W. Lloyd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, J., Calder, G., Doonan, J. et al. EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5, 967–971 (2003). https://doi.org/10.1038/ncb1057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing