Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dysregulation of HSG triggers vascular proliferative disorders

Abstract

Vascular proliferative disorders, such as atherosclerosis and restenosis, are the most common causes of severe cardiovascular diseases, but a common molecular mechanism remains elusive. Here, we identify and characterize a novel hyperplasia suppressor gene, named HSG (later re-named rat mitofusin-2). HSG expression was markedly reduced in hyper-proliferative vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rat arteries, balloon-injured Wistar Kyoto rat arteries, or ApoE-knockout mouse atherosclerotic arteries. Overexpression of HSG overtly suppressed serum-evoked VSMC proliferation in culture, and blocked balloon injury induced neointimal VSMC proliferation and restenosis in rat carotid arteries. The HSG anti-proliferative effect was mediated by inhibition of ERK/MAPK signalling and subsequent cell-cycle arrest. Deletion of the p21ras signature motif, but not the mitochondrial targeting domain, abolished HSG-induced growth arrest, indicating that rHSG-induced anti-proliferation was independent of mitochondrial fusion. Thus, rHSG functions as a cell proliferation suppressor, whereas dysregulation of rHSG results in proliferative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: rHSG is downregulated in highly proliferative vascular smooth muscle cells (VSMCs).
Figure 2: Overexpression of rHSG inhibits serum-stimulated VSMC proliferation.
Figure 3: rHSG-induced cell cycle arrest is associated with increased p21 and p27 abundance and reduced phosphorylation of Rb.
Figure 4: Binding of rHSG to Ras inhibits the Ras–Raf–ERK1/2 signalling pathway in WKY VSMCs.
Figure 5: Mitochondrial targeting is not required for rHSG-mediated inhibition of ERK1/2 signalling and anti-proliferation.
Figure 6: Adenoviral gene transfer of rHSG inhibits VSMC proliferation in balloon-injured rat carotid arteries.
Figure 7: Downregulation of rHSG in atherosclerotic carotid arteries from ApoE-knockout mice.
Figure 8: Overexpression of rHSG prevents balloon-injury induced restenosis in rat carotid arteries.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Novak, K. Cardiovascular disease increasing in developing countries. Nature Med. 4, 989–990 (1998).

    Article  CAS  Google Scholar 

  2. Tunstall-Pedoe, H. et al. Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet 353, 1547–1557 (1999).

    Article  CAS  Google Scholar 

  3. Dzau, V.J., Braun-Dullaeus, R.C. & Sedding, D.G. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nature Med. 8, 1249–1256 (2002).

    Article  CAS  Google Scholar 

  4. Forrester, J.S., Fishbein, M., Helfant, R. & Fagin, J. A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies. J. Am. Coll. Cardiol. 17, 758–769 (1991).

    Article  CAS  Google Scholar 

  5. Braun-Dullaeus, R.C., Mann, M.J. & Dzau, V.J. Cell cycle progression: new therapeutic target for vascular proliferative disease. Circulation 98, 82–89 (1998).

    Article  CAS  Google Scholar 

  6. Libby, P. Vascular biology of atherosclerosis: overview and state of the art. Am. J. Cardiol. 91, 3A–6A (2003).

    Article  CAS  Google Scholar 

  7. Nabel, E.G. et al. Recombinant platelet-derived growth factor B gene expression in porcine arteries induce intimal hyperplasia in vivo. J. Clin. Invest. 91, 1822–1829 (1993).

    Article  CAS  Google Scholar 

  8. Nabel, E.G. et al. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature 362, 844–846 (1993).

    Article  CAS  Google Scholar 

  9. Taylor, D.S. et al. Epiregulin is a potent vascular smooth muscle cell-derived mitogen induced by angiotensin II, endothelin-1, and thrombin. Proc. Natl Acad. Sci. 96, 1633–1638 (1999).

    Article  CAS  Google Scholar 

  10. Dobrowolski, S., Harter, M. & Stacey, D.W. Cellular ras activity is required for passage through multiple points of the G0/G1 phase in BALB/c 3T3 cells. Mol. Cell Biol. 14, 5441–5449 (1994).

    Article  CAS  Google Scholar 

  11. Marshall, C.J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  12. Peeper, D.S. et al. Ras signaling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386, 177–181 (1997).

    Article  CAS  Google Scholar 

  13. Delmas, C. et al. The p42/p44 mitogen-activated protein kinase activation triggers p27kip1 degradation independently of cdk2/cyclin E in NIH 3T3 cells. J. Biol. Chem. 276, 34958–34965 (2001).

    Article  CAS  Google Scholar 

  14. Leone, G., DeGregori, J., Sears, R., Jakoi, L. & Nevins, J.R. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387, 422–426 (1997).

    Article  CAS  Google Scholar 

  15. Aktas, H., Cai, H. & Cooper, G.M. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol. Cell. Biol. 17, 3850–3857 (1997).

    Article  CAS  Google Scholar 

  16. Ferguson, J.E. & Patterson, C. Break the cycle: the role of cell-cycle modulation in the prevention of vasculoproliferative diseases. Cell Cycle 2, 211–219 (2003).

    Article  CAS  Google Scholar 

  17. Santel, A. & Fuller, M.T. Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867–874 (2001).

    CAS  PubMed  Google Scholar 

  18. Rojo, M., Legros, F., Chateau, D. & Lombès, A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663–1674 (2002).

    CAS  PubMed  Google Scholar 

  19. Karbowski, M. et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 159, 931–938 (2002).

    Article  CAS  Google Scholar 

  20. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003).

    Article  CAS  Google Scholar 

  21. Hales, K.G. & Fuller, M.T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997).

    Article  CAS  Google Scholar 

  22. Okamoto, K. & Aoki, K. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 27, 282–293 (1963).

    Article  CAS  Google Scholar 

  23. Johns, D.G., Webb, R.C. & Charpie, J.R. Impaired ceramide signaling in spontaneously hypertensive rat vascular smooth muscle: a possible mechanism for augmented cell proliferation. J. Hypertens. 19, 63–70 (2001).

    Article  CAS  Google Scholar 

  24. Bing, O.H. et al. The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. J. Mol. Cell. Cardiol. 27, 383–396 (1995).

    Article  CAS  Google Scholar 

  25. Clowes, A., Reidy, M. & Clowes, M. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab. Invest. 49, 327–333 (1983).

    CAS  PubMed  Google Scholar 

  26. Clowes, A.W. & Schwartz, S.M. Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ. Res. 56, 139–145 (1985).

    Article  CAS  Google Scholar 

  27. Hanke, H., Strohschneider, T., Oberhoff, M., Betz, E. & Karsch, K.R. Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ. Res. 67, 651–659 (1990).

    Article  CAS  Google Scholar 

  28. Srivastava, S., Zou, Z.Q., Pirollo, K., Blattner, W. & Chang, E.H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990).

    Article  CAS  Google Scholar 

  29. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).

    Article  CAS  Google Scholar 

  30. Coats, S., Flanagan, W.M., Nourse, J. & Roberts, J.M. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272, 877–880 (1996).

    Article  CAS  Google Scholar 

  31. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  Google Scholar 

  32. Fero, M.L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  Google Scholar 

  33. Harbour, J.W. & Dean, D.C. Rb function in cell-cycle regulation and apoptosis. Nature Cell Biol. 2, E65–E67 (2000).

    Article  CAS  Google Scholar 

  34. DeGregori, J., Kowalik, T. & Nevins, J.R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 15, 4215–4224 (1995).

    Article  CAS  Google Scholar 

  35. Garas, S.M., Huber, P. & Scott, N.A. Overview of therapies for prevention of restenosis after coronary interventions. Pharmacol. Ther. 92, 165–178 (2001).

    Article  CAS  Google Scholar 

  36. Moses, J.W. et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349, 1315–1323 (2003).

    Article  CAS  Google Scholar 

  37. Woods, T.C. & Marks, A.R. Drug eluting stents. Annu. Rev. Med. 55, 169–178 (2004).

    Article  CAS  Google Scholar 

  38. Morishita, R. Recent progress in gene therapy for cardiovascular disease. Circ. J. 66, 1077–1086 (2002).

    Article  CAS  Google Scholar 

  39. Chang, M.W. et al. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 267, 518–522 (1995).

    Article  CAS  Google Scholar 

  40. Chang, M.W., Barr, E., Lu, M.M., Barton, K. & Leiden, J.M. Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J. Clin. Invest. 96, 2260–2268 (1995).

    Article  CAS  Google Scholar 

  41. Ohno, T. et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 265, 781–784 (1994).

    Article  CAS  Google Scholar 

  42. Ooboshi, H., Rios, C.D. & Heistad, D.D. Novel methods for adenovirus-mediated gene transfer to blood vessels in vivo. Mol. Cell. Biochem. 172, 37–46 (1997).

    Article  CAS  Google Scholar 

  43. Tulis, D.A. et al. Adenovirus-mediated heme oxygenase-1 gene delivery inhibits injury-induced vascular neointima formation. Circulation 104, 2710–2715 (2001).

    Article  CAS  Google Scholar 

  44. Maillard, L. et al. Effect of percutaneous adenovirus-mediated Gax gene delivery to the arterial wall in double-injured atheromatous stented rabbit iliac arteries. Gene Ther. 7, 1353–1361 (2000).

    Article  CAS  Google Scholar 

  45. Kim, S. et al. Transcriptional targeting of replication-defective adenovirus transgene expression to smooth muscle cells in vivo. J. Clin. Invest. 100, 1006–1014 (1997).

    Article  CAS  Google Scholar 

  46. Chakir, K. et al. The third intracellular loop and the carboxyl terminus of β2-adrenergic receptor confer the receptor spontaneous activity. Mol. Pharmacol. 64, 1048–1058 (2003).

    Article  CAS  Google Scholar 

  47. Devlin, A.M. The effects of perindopril on vascular smooth muscle polyploidy in stroke-prone spontaneously hypertensive rats. J. Hypertens. 13, 211–218 (1995).

    Article  CAS  Google Scholar 

  48. Feliciello, I & Chinali, G. A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli. Anal. Biochem. 212, 394–401 (1993).

    Article  CAS  Google Scholar 

  49. Benson, D.A. et al. GenBank. Nucleic Acids Res. 27, 12–17 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Priorities Program 973 (G1998051015 and G2000056906), China's 863 High-Tech National Research Programme, Chinese Young Investigator Award (30225036), Peking University 985 Project. The authors would like to thank D. Longo, H. Cheng, E.G. Lakatta, P. Morin, X. Fu and J. Chen for critical reading and discussions. We would also like to thank M. Wang and J. Zhang for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Ping Xiao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Figures

Fig. S1, Fig. S2 and Fig. S3 (PDF 791 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, KH., Guo, X., Ma, D. et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol 6, 872–883 (2004). https://doi.org/10.1038/ncb1161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing