Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Desmoplakin is essential in epidermal sheet formation

Abstract

We have generated an epidermis-specific desmoplakin (DP) mouse knockout, and show that epidermal integrity requires DP; mechanical stresses to DP-null skin cause intercellular separations. The number of epidermal desmosomes in DP-null skin is similar to wild type (WT), but they lack keratin filaments, which compromise their function. DP-null keratinocytes have few desmosomes in vitro, and are unable to undergo actin reorganization and membrane sealing during epithelial sheet formation. Adherens junctions are also reduced. In vitro, DP transgene expression rescues these defects. DP is therefore required for assembly of functional desmosomes, maintaining cytoskeletal architecture and reinforcing membrane attachments essential for stable intercellular adhesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of a conditional DP knockout in mouse skin epidermis.
Figure 2: Abnormalities in DP-null skin and in cornified envelope formation.
Figure 3: Ultrastructural analysis of intercellular adhesion in WT and DP-null skin.
Figure 4: Localization of adhesion, cytoskeleton and basement membrane proteins in DP-null epidermis.
Figure 5: Relative levels of expression of cell–cell adhesion proteins in DP-null versus wild-type epidermal cells in vivo and in vitro.
Figure 6: Aberrations in DP-null cell–cell junctions and KF-cell border attachments in vitro, and their rescue by gene transfection.
Figure 8: Ultrastructural analysis of cell–cell junctions in DP-null keratinocytes.
Figure 7: Aberrations in actin reorganization and epithelial sheet formation in DP-null keratinocytes.

Similar content being viewed by others

References

  1. Garrod, D. R. Desmosomes and hemidesmosomes. Curr. Opin Cell. Biol. 5, 30–40 (1993).

    Article  CAS  Google Scholar 

  2. Kowalczyk, A. P., Bornslaeger, E. A., Norvell, S. M., Palka, H. L. & Green, K. J. Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. Int. Rev. Cytol. 185, 237–302 (1999).

    Article  CAS  Google Scholar 

  3. Koch, P. J. & Franke, W. W. Desmosomal cadherins: another growing multigene family of adhesion molecules. Curr. Opin. Cell Biol. 6, 682–687 (1994).

    Article  CAS  Google Scholar 

  4. Barth, A. I., Nathke, I. S. & Nelson, W. J. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr. Opin. Cell Biol. 9, 683–690 (1997).

    Article  CAS  Google Scholar 

  5. Cowin, P., Kapprell, H.-P., Franke, W. W., Tamkun, J. & Hynes, R. O. Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell 46, 1063–1073 (1986).

    Article  CAS  Google Scholar 

  6. Mertens, C., Kuhn, C. & Franke, W. W. Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J. Cell Biol. 135, 1009–1025 (1996).

    Article  CAS  Google Scholar 

  7. Schmidt, A. et al. Plakophilins 1a and 1b: widespread nuclear proteins recruited in specific epithelial cells as desmosomal plaque components. Cell Tissue Res. 290, 481–499 (1997).

    Article  CAS  Google Scholar 

  8. Schmidt, A., et al. Plakophilin 3 — a novel cell-type-specific desmosomal plaque protein. Differentiation 64, 291–306 (1999).

    CAS  PubMed  Google Scholar 

  9. Ruhrberg, C. & Watt, F. M. The plakin family: versatile organizers of cytoskeletal architecture. Curr. Opin. Genet. Dev. 7, 392–397 (1997).

    Article  CAS  Google Scholar 

  10. Fuchs, E. & Karakesisoglou, I. Bridging cytoskeletal intersections. Genes Dev. 15, 1–14 (2001).

    Article  CAS  Google Scholar 

  11. O'Keefe, E. J., Briggaman, R. A. & Herman, B. Calcium-induced assembly of adherens junctions in keratinocytes. J. Cell Biol. 105, 807–817 (1987).

    Article  CAS  Google Scholar 

  12. Stappenbeck, T. S. & Green, K. J. The desmoplakin carboxyl terminus coaligns with and specifically disrupts intermediate filament networks when expressed in cultured cells. J. Cell Biol. 116, 1197–1209 (1992).

    Article  CAS  Google Scholar 

  13. Kouklis, P., Hutton, E. & Fuchs, E. Making the connection: keratin intermediate filaments and desmosomes proteins. J. Cell Biol. 127, 1049–1060 (1994).

    Article  CAS  Google Scholar 

  14. Smith, E. & Fuchs, E. Defining the interactions between intermediate filaments and desmosomes. J. Cell Biol. 141, 1229–1241 (1998).

    Article  CAS  Google Scholar 

  15. Kowalczyk, A. P., et al. The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J. Cell Biol. 139, 773–784 (1997).

    Article  CAS  Google Scholar 

  16. Bornslaeger, E. A., Corcoran, C. M., Stappenbeck, T. S. & Green, K. J. Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J. Cell Biol. 134, 985–1001 (1996).

    Article  CAS  Google Scholar 

  17. Gallicano, G. I., et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell Biol. 143, 2009–2022 (1998).

    Article  CAS  Google Scholar 

  18. Armstrong, D. K., et al. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum. Mol. Genet. 8, 143–148 (1999).

    Article  CAS  Google Scholar 

  19. Norgett, E. E., et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9, 2761–2766 (2000).

    Article  CAS  Google Scholar 

  20. O'Gorman, S. & Wahl, G. M. Mouse engineering. Science 277, 1025 (1997).

    Article  CAS  Google Scholar 

  21. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA 96, 8551–8556 (1999).

    Article  CAS  Google Scholar 

  22. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).

    Article  CAS  Google Scholar 

  23. Rice, R. H. & Green, H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell 18, 681–694 (1979).

    Article  CAS  Google Scholar 

  24. Nievers, M. G., Schaapveld, R. Q. & Sonnenberg, A. Biology and function of hemidesmosomes. Matrix Biol. 18, 5–17 (1999).

    Article  CAS  Google Scholar 

  25. Jones, J. C., Hopkinson, S. B. & Goldfinger, L. E. Structure and assembly of hemidesmosomes. Bioessays 20, 488–494 (1998).

    Article  CAS  Google Scholar 

  26. McGrath, J. A., et al. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nature Genet. 17, 240–244 (1997).

    Article  CAS  Google Scholar 

  27. Hatzfeld, M., Haffner, C., Schulze, K. & Vinzens, U. The function of plakophilin 1 in desmosome assembly and actin filament organization. J. Cell Biol. 149, 209–222 (2000).

    Article  CAS  Google Scholar 

  28. Riddelle, K. S., Hopkinson, S. B. & Jones, J. C. Hemidesmosomes in the epithelial cell line 804G: their fate during wound closure, mitosis and drug induced reorganization of the cytoskeleton. J. Cell Sci. 103, 475–490 (1992).

    PubMed  Google Scholar 

  29. Gumbiner, B., Stevenson, B. & Grimaldi, A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107, 1575–1587 (1988).

    Article  CAS  Google Scholar 

  30. Lewis, J. E., Jensen, P. J. & Wheelock, M. J. Cadherin function is required for human keratinocytes to assemble desmosomes and stratify in response to calcium. J. Invest. Dermatol. 102, 870–877 (1994).

    Article  CAS  Google Scholar 

  31. Wheelock, M. J. & Jensen, P. J. Regulation of keratinocyte intercellular junction organization and epidermal morphogenesis by E-cadherin. J. Cell Biol. 117, 415–425 (1992).

    Article  CAS  Google Scholar 

  32. Lewis, J., et al. Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J. Cell Biol. 136, 919–934 (1997).

    Article  CAS  Google Scholar 

  33. Ruiz, P., et al. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J. Cell Biol. 135, 215–225 (1996).

    Article  CAS  Google Scholar 

  34. Bierkamp, C., Mclaughlin, K. J., Schwarz, H., Huber, O. & Kemler, R. Embryonic heart and skin defects in mice lacking plakoglobin. Dev. Biol. 180, 780–785 (1996).

    Article  CAS  Google Scholar 

  35. Andra, K., Nikolic, B., Stocher, M., Drenckhahn, D. & Wiche, G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 12, 3442–3451 (1998).

    Article  CAS  Google Scholar 

  36. Wang, X., Zinkel, S., Polansky, K. & Fuchs, E. Marked growth enhancement in transgenic mice expressing keratin promoter-driven human growth hormone: implications for keratinocyte mediated gene therapy. Proc. Natl Acad. Sci. USA 94, 219–226 (1997).

    Article  CAS  Google Scholar 

  37. Haugwitz, M., Noegel, A. A., Karakesisoglou, I. & Schleicher, M. Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development. Cell 79, 303–314 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. King, J. Stanley; W. Franke for gifts of antibodies:. We especially thank A. Kobielak for carrying out the northern analysis. E.F. is an Investigator of the Howard Hughes Medical Institute. This work was supported by a grant to E.F. awarded by the National Institutes of Health (R01-AR27883).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasioukhin, V., Bowers, E., Bauer, C. et al. Desmoplakin is essential in epidermal sheet formation. Nat Cell Biol 3, 1076–1085 (2001). https://doi.org/10.1038/ncb1201-1076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1201-1076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing