Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coupling of ER exit to microtubules through direct interaction of COPII with dynactin

Abstract

Transport of proteins from the endoplasmic reticulum (ER) to the Golgi is mediated by the sequential action of two coat complexes: COPII concentrates cargo for secretion at ER export sites, then COPI is subsequently recruited to nascent carriers and retrieves recycling proteins back to the ER. These carriers then move towards the Golgi along microtubules, driven by the dynein/dynactin complexes. Here we show that the Sec23p component of the COPII complex directly interacts with the dynactin complex through the carboxy-terminal cargo-binding domain of p150Glued. Functional assays, including measurements of the rate of recycling of COPII on the ER membrane and quantitative analyses of secretion, indicate that this interaction underlies functional coupling of ER export to microtubules. Together, our data suggest a mechanism by which membranes of the early secretory pathway can be linked to motors and microtubules for subsequent organization and movement to the Golgi apparatus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ERES associate with microtubules and GFP–p150Glued.
Figure 2: ERES associate with growing microtubules.
Figure 3: Interaction of Sec23Ap and p150Glued.
Figure 4: Colocalization of COPII and p150Glued.
Figure 5: Expression of the C-terminal 317 amino acids of p150Glued (CTGlued) inhibits cargo export from the ER.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Orci, L. et al. Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc. Natl Acad. Sci. USA 88, 8611–8615 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barlowe, C. COPII-dependent transport from the endoplasmic reticulum. Curr. Opin. Cell Biol. 14, 417–422 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Scales, S. J., Pepperkok, R. & Kreis, T. E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol. 131, 875–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    CAS  PubMed  Google Scholar 

  7. Kamal, A. & Goldstein, L. S. Principles of cargo attachment to cytoplasmic motor proteins. Curr. Opin. Cell Biol. 14, 63–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Ralston, E., Ploug, T., Kalhovde, J. & Lomo, T. Golgi complex, endoplasmic reticulum exit sites, and microtubules in skeletal muscle fibers are organized by patterned activity. J. Neurosci. 21, 875–883 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saraste, J. & Svensson, K. Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci. 100, 415–430 (1991).

    CAS  PubMed  Google Scholar 

  10. Mizuno, M. & Singer, S. J. A possible role for stable microtubules in intracellular transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell Sci. 107, 1321–1331 (1994).

    PubMed  Google Scholar 

  11. Aridor, M. et al. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J. Cell Biol. 152, 213–229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lippincott-Schwartz, J., Cole, N. B., Marotta, A., Conrad, P. A. & Bloom, G. S. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J. Cell Biol. 128, 293–306 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Hammond, A. T. & Glick, B. S. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell 11, 3013–3030 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stephens, D. J., Lin-Marq, N., Pagano, A., Pepperkok, R. & Paccaud, J. P. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J. Cell Sci. 113, 2177–2185 (2000).

    CAS  PubMed  Google Scholar 

  15. Stephens, D. J. De novo formation, fusion and fission of mammalian COPII-coated endoplasmic reticulum exit sites. EMBO Rep. 4, 210–217 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vaughan, P. S., Miura, P., Henderson, M., Byrne, B. & Vaughan, K. T. A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport. J. Cell Biol. 158, 305–319 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carvalho, P., Tirnauer, J. S. & Pellman, D. Surfing on microtubule ends. Trends Cell Biol. 13, 229–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Askham, J. M., Vaughan, K. T., Goodson, H. V. & Morrison, E. E. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13, 3627–3645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pepperkok, R. et al. Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74, 71–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Vaughan, K. T. & Vallee, R. B. Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 131, 1507–1516 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Waterman-Storer, C. M., Karki, S. & Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl Acad. Sci. USA 92, 1634–1638 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antonny, B., Madden, D., Hamamoto, S., Orci, L. & Schekman, R. Dynamics of the COPII coat with GTP and stable analogues. Nature Cell Biol. 3, 531–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Tang, B. L. et al. Mammalian homologues of yeast sec31p. An ubiquitously expressed form is localized to endoplasmic reticulum (ER) exit sites and is essential for ER-Golgi transport. J. Biol. Chem. 275, 13597–13604 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lowe, M. & Kreis, T. E. In vivo assembly of coatomer, the COP-I coat precursor. J. Biol. Chem. 271, 30725–30730 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quintyne, N. J. et al. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147, 321–334 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vaughan, K. T., Tynan, S. H., Faulkner, N. E., Echeverri, C. J. & Vallee, R. B. Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends. J. Cell Sci. 112, 1437–1447 (1999).

    CAS  PubMed  Google Scholar 

  29. Holleran, E. A., Tokito, M. K., Karki, S. & Holzbaur, E. L. Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol. 135, 1815–1829 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Shima, D. T., Scales, S. J., Kreis, T. E. & Pepperkok, R. Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic-reticulum-to-Golgi transport complexes. Curr. Biol. 9, 821–824 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Allan, B. B., Moyer, B. D. & Balch, W. E. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Miller, E. A. et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114, 497–509 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Mossessova, E., Bickford, L. C. & Goldberg, J. SNARE Selectivity of the COPII Coat. Cell 114, 483–495 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to H.-P. Hauri, K. Simons, J. Simpson, F. Gorelick, I. Vernos, P. Keller, K. Vaughan, T. Schroer and V. Allan for gifts of reagents, to A. Geerlof for help with baculovirus expression, to J. Konkel and B. Joggerst for technical assistance, and to G. Banting, H. Mellor and J. Lane for discussions and critical reading of the manuscript. Work within the Stephens laboratory was supported by the Medical Research Council (through a Research Career Development Award to D.J.S.), the Wellcome Trust and the Royal Society. The University of Bristol Cell Imaging Facility was funded by an Infrastructure Award and Joint Research Equipment Initiative Grant from the Medical Research Council. We also thank Perkin Elmer, Leica Microsystems, Olympus Europe and Carl Zeiss for support of the Advanced Light Microscopy Facility at EMBL, Heidelberg. R.F. was funded by the EMBL predoctoral student programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rainer Pepperkok or David J. Stephens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, P., Forster, R., Palmer, K. et al. Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat Cell Biol 7, 48–55 (2005). https://doi.org/10.1038/ncb1206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing