Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin

Abstract

In eukaryotes, heterochromatin mediates diverse processes including gene silencing and regulation of long-range chromatin interactions1,2. The formation of heterochromatin involves a conserved array of histone modifications; in particular, methylation of histone H3 at Lys 9 (H3K9me) is essential for recruiting HP1/Swi6 proteins3. In fission yeast, the Clr4 methyltransferase is responsible for H3K9me across all heterochromatic domains4,5. However, the mechanism of Clr4 recruitment to these loci is poorly understood. We show that Clr4 associates with Cul4, a cullin family protein that serves as a scaffold for assembling ubiquitin ligases. Mutations in Cul4 result in defective localization of Clr4 and loss of silencing at heterochromatic loci. This is accompanied by a severe reduction in H3K9me and Swi6 levels, and accumulation of transcripts corresponding to naturally silenced repeat elements within heterochromatic domains. Moreover, heterochromatin defects in Cul4 mutants could not be rescued by expression of Cul4 protein lacking Nedd8 modification, which is essential for its ubiquitin ligase activity. Rik1, a protein related to DNA damage binding protein DDB1 and required for H3K9me4,6, also interacts with Cul4, the association of which might serve to target Clr4 to heterochromatic loci. These analyses uncover a role for Cul4-based protein ubiquitination in regulating H3K9me and heterochromatin formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cul4 associates with Clr4 and Rik1.
Figure 2: Cul4 is required for heterochromatin formation.
Figure 3: Mutation in Cul4 affects chromosome segregation and mating-type switching.
Figure 4: The ubiquitin ligase activity of Cul4 is required for heterochromatin formation.
Figure 5: Cul4 recruits Clr4 to heterochromatic loci.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Hall, I. M. & Grewal, S. I. S. Structure and function of heterochromatin: implications for epigenetic gene silencing and genome organization. In RNAi: A Guide to Gene Silencing (ed. Hannon, G.) 205–232 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2003).

    Google Scholar 

  2. Jia, S., Yamada, T. & Grewal, S. I. S. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119, 469–480 (2004).

    Article  CAS  Google Scholar 

  3. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  4. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. S. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  Google Scholar 

  5. Cam, H. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005).

    Article  CAS  Google Scholar 

  6. Tuzon, C. T. et al. The fission yeast heterochromatin protein Rik1 is required for telomere clustering during meiosis. J. Cell Biol. 165, 759–765 (2004).

    Article  CAS  Google Scholar 

  7. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).

    Article  CAS  Google Scholar 

  8. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol. 4, 89–93 (2002).

    Article  CAS  Google Scholar 

  9. Sims, R. J. 3rd, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639 (2003).

    Article  CAS  Google Scholar 

  10. Jia, S., Noma, K. & Grewal, S. I. S. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    Article  CAS  Google Scholar 

  11. Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005).

    Article  CAS  Google Scholar 

  12. Grewal, S. I. S. & Rice, J. C. Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell. Biol. 16, 230–238 (2004).

    Article  CAS  Google Scholar 

  13. Chan, S. W., Henderson, I. R. & Jacobsen, S. E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Rev. Genet. 6, 351–360 (2005).

    Article  CAS  Google Scholar 

  14. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet. 36, 1174–1180 (2004).

    Article  CAS  Google Scholar 

  15. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  16. Sadaie, M., Iida, T., Urano, T. & Nakayama, J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J. 23, 3825–3835 (2004).

    Article  CAS  Google Scholar 

  17. Neuwald, A. F. & Poleksic, A. PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of β-propellers in UV-damaged DNA-binding protein. Nucl. Acids Res. 28, 3570–3580 (2000).

    Article  CAS  Google Scholar 

  18. Hu, J., McCall, C. M., Ohta, T. & Xiong, Y. Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nature Cell Biol. 6, 1003–1009 (2004).

    Article  CAS  Google Scholar 

  19. Liu, C. et al. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes Dev. 17, 1130–1140 (2003).

    Article  CAS  Google Scholar 

  20. Holmberg, C. et al. Ddb1 controls genome stability and meiosis in fission yeast. Genes Dev. 19, 853–862 (2005).

    Article  CAS  Google Scholar 

  21. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. S. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA. 102, 152–157 (2005).

    Article  CAS  Google Scholar 

  22. Niwa, O., Matsumoto, T. & Yanagida, M. Construction of mini-chromosome by deletion and its mitotic and meiotic behaviour in fission yeast. Mol. Gen. Genet. 203, 397–405 (1986).

    Article  CAS  Google Scholar 

  23. Thon, G. & Klar, A. J. Directionality of fission yeast mating-type interconversion is controlled by the location of the donor loci. Genetics 134, 1045–1054 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ivanova, A. V., Bonaduce, M. J., Ivanov, S. V. & Klar, A. J. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nature Genet. 19, 192–195 (1998).

    Article  CAS  Google Scholar 

  25. Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985–1997 (2004).

    Article  CAS  Google Scholar 

  26. Osaka, F. et al. Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J. 19, 3475–3484 (2000).

    Article  CAS  Google Scholar 

  27. Horn, P. J., Bastie, J. N. & Peterson, C. L. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev. 19, 1705–1714 (2005).

    Article  CAS  Google Scholar 

  28. Brand, M. et al. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J. 20, 3187–3196 (2001).

    Article  CAS  Google Scholar 

  29. Martinez, E. et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol. Cell. Biol. 21, 6782–6795 (2001).

    Article  CAS  Google Scholar 

  30. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  Google Scholar 

  31. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  Google Scholar 

  32. Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).

    Article  CAS  Google Scholar 

  33. Dover, J. et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol. Chem. 277, 28368–28371 (2002).

    Article  CAS  Google Scholar 

  34. Ng, H. H., Xu, R. M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655–34657 (2002).

    Article  CAS  Google Scholar 

  35. Briggs, S. D. et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Mizuguchi and C. Wu for purification protocol. We thank O. Nielsen for allowing us to cite their work before publication, and J. Zerillo and A. Zuniga for mass spectrometry analyses. We also thank H. Cam for help in manuscript preparation, A. Guhathakurta and T. Sugiyama for critical reading of the manuscript, and E. Chen and other members of the Grewal laboratory for help and discussions. This research was supported by the National Cancer Institute intramural research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv I. S. Grewal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, S., Kobayashi, R. & Grewal, S. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol 7, 1007–1013 (2005). https://doi.org/10.1038/ncb1300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing