Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion

Abstract

E-cadherin mediates the formation of adherens junctions between epithelial cells1. It serves as a receptor for Listeria monocytogenes, a bacterial pathogen that enters epithelial cells2. The L. monocytogenes surface protein, InlA, interacts with the extracellular domain of E-cadherin3,4,5. In adherens junctions, this ectodomain is involved in homophilic interactions whereas the cytoplasmic domain binds β-catenin, which then recruits α-catenin. α-catenin binds to actin directly, or indirectly, thus linking E-cadherin to the actin cytoskeleton6,7. Entry of L. monocytogenes into cells and adherens junction formation are dynamic events that involve actin and membrane rearrangements. To understand these processes better, we searched for new ligands of α-catenin. Using a two-hybrid screen, we identified a new partner of α-catenin: ARHGAP10. This protein colocalized with α-catenin at cell–cell junctions and was recruited at L. monocytogenes entry sites. In ARHGAP10-knockdown cells, L. monocytogenes entry and α-catenin recruitment at cell–cell contacts were impaired. The GAP domain of ARHGAP10 has GAP activity for RhoA and Cdc42. Its overexpression disrupted actin cables, enhanced α-catenin and cortical actin levels at cell–cell junctions and inhibited L. monocytogenes entry. Altogether, our results show that ARHGAP10 is a new component of cell–cell junctions that controls α-catenin recruitment and has a key role during L. monocytogenes uptake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: α-catenin binds to the C terminus of ARHGAP10.
Figure 2: Localization of ARHGAP10 in Caco-2 and JEG-3 cells.
Figure 3: ARHGAP10 knockdown inhibits the InlA-dependent entry of L. monocytogenes and recruitment of α-catenin to adherens junctions.
Figure 4: Functional analysis of the GAP domain of ARHGAP10.
Figure 5: Effect of ARHGAP10 constructs on the InlA-dependent entry of L. monocytogenes.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Yap, A. S., Brieher, W. M. & Gumbiner, B. M. Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13, 119–146 (1997).

    Article  CAS  Google Scholar 

  2. Cossart, P., Pizarro-Cerda, J. & Lecuit, M. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol. 13, 23–31 (2003).

    Article  CAS  Google Scholar 

  3. Schubert, W. D. et al. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111, 825–836 (2002).

    Article  CAS  Google Scholar 

  4. Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M. & Cossart, P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932 (1996).

    Article  CAS  Google Scholar 

  5. Lecuit, M. et al. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18, 3956–3963 (1999).

    Article  CAS  Google Scholar 

  6. Kobielak, A. & Fuchs, E. α-catenin: at the junction of intercellular adhesion and actin dynamics. Nature Rev. Mol. Cell Biol. 5, 614–625 (2004).

    Article  CAS  Google Scholar 

  7. Kobielak, A., Pasolli, H. A. & Fuchs, E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nature Cell Biol. 6, 21–30 (2004).

    Article  CAS  Google Scholar 

  8. Basseres, D. S., Tizzei, E. V., Duarte, A. A., Costa, F. F. & Saad, S. T. ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein. Biochem. Biophys. Res. Commun. 294, 579–585 (2002).

    Article  Google Scholar 

  9. Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).

    Article  CAS  Google Scholar 

  10. Peck, J., Douglas, G. T., Wu, C. H. & Burbelo, P. D. Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships. FEBS Lett. 528, 27–34 (2002).

    Article  CAS  Google Scholar 

  11. Lecuit, M. et al. A role for α- and β-catenins in bacterial uptake. Proc. Natl Acad. Sci. USA 97, 10008–10013 (2000).

    Article  CAS  Google Scholar 

  12. Sousa, S. et al. Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells. J. Cell Sci. 117, 2121–2130 (2004).

    Article  CAS  Google Scholar 

  13. Pizarro-Cerda, J., Lecuit, M. & Cossart, P. in Methods Microbiology (eds Sansonetti, P. & Zychlinsky, A.) 161–177 (Elsevier, Amsterdam, 2002).

    Google Scholar 

  14. Dramsi, S. et al. Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol. Microbiol. 16, 251–261 (1995).

    Article  CAS  Google Scholar 

  15. Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548 (2003).

    Article  CAS  Google Scholar 

  16. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100, 209–219 (2000).

    Article  CAS  Google Scholar 

  17. Nagafuchi, A. & Takeichi, M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 7, 3679–3684 (1988).

    Article  CAS  Google Scholar 

  18. Yap, A. S., Brieher, W. M., Pruschy, M. & Gumbiner, B. M. Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr. Biol. 7, 308–315 (1997).

    Article  CAS  Google Scholar 

  19. Hinck, L., Nathke, I. S., Papkoff, J. & Nelson, W. J. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J. Cell Biol. 125, 1327–1340 (1994).

    Article  CAS  Google Scholar 

  20. Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).

    Article  CAS  Google Scholar 

  21. Braga, V. M. Cell-cell adhesion and signalling. Curr. Opin. Cell Biol. 14, 546–556 (2002).

    Article  CAS  Google Scholar 

  22. Fukata, M. et al. Involvement of IQGAP1, an effector of Rac1 and Cdc42 GTPases, in cell-cell dissociation during cell scattering. Mol. Cell. Biol. 21, 2165–2183 (2001).

    Article  CAS  Google Scholar 

  23. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  24. Cougoule, C., Wiedemann, A., Lim, J. & Caron, E. Phagocytosis, an alternative model system for the study of cell adhesion. Semin. Cell Dev. Biol. 15, 679–689 (2004).

    Article  CAS  Google Scholar 

  25. Niedergang, F. & Chavrier, P. Regulation of phagocytosis by Rho GTPases. Curr. Top. Microbiol. Immunol. 291, 43–60 (2005).

    CAS  PubMed  Google Scholar 

  26. Dubois, T. et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nature Cell Biol. 7, 353–364 (2005).

    Article  CAS  Google Scholar 

  27. Palacios, F., Price, L., Schweitzer, J., Collard, J. G. & D'Souza-Schorey, C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J. 20, 4973–4986 (2001).

    Article  CAS  Google Scholar 

  28. Kussel-Andermann, P. et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J. 19, 6020–6029 (2000).

    Article  CAS  Google Scholar 

  29. Lecuit, M., Ohayon, H., Braun, L., Mengaud, J. & Cossart, P. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun. 65, 5309–5319 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mengaud, J. et al. Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect. Immun. 64, 5430–5433 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. A. Hall for the generous gift of p50-RhoGAP purified protein, members of P. Cossart's laboratory for helpful discussions and Hybrigenics staff for their contributions. This work received financial support from Institut Pasteur (GPH N°9); French Ministry of Research (Programme de Microbiologie Fondamentale et Apliquée, Maladies Infectieuses, Environment et Bioterrorisme ACI N° MIC 0312) and Association pour la Recherche sur le Cancer (ARC4404). S. Sousa is a recipient of a Fellowship from the Portuguese Government (SFRH/BD/1374/2000 and POCTI-LA000308-BPD). P. Cossart is an International Research Scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Cossart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 565 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, S., Cabanes, D., Archambaud, C. et al. ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion. Nat Cell Biol 7, 954–960 (2005). https://doi.org/10.1038/ncb1308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing