Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis

An Erratum to this article was published on 02 December 2005

Abstract

Two distinct chromosome architectures are prevalent among eukaryotes: monocentric, in which localized centromeres restrict kinetochore assembly to a single chromosomal site, and holocentric, in which diffuse kinetochores form along the entire chromosome length. During mitosis, both chromosome types use specialized chromatin, containing the histone H3 variant CENP-A1,2,3, to direct kinetochore assembly4,5,6,7. For the segregation of recombined homologous chromosomes during meiosis8,9, monocentricity is thought to be crucial for limiting spindle-based forces to one side of a crossover and to prevent recombined chromatids from being simultaneously pulled towards both spindle poles. The mechanisms that allow holocentric chromosomes to avert this fate remain uncharacterized. Here, we show that markedly different mechanisms segregate holocentric chromosomes during meiosis and mitosis in the nematode Caenorhabditis elegans. Immediately prior to oocyte meiotic segregation, outer-kinetochore proteins were recruited to cup-like structures on the chromosome surface via a mechanism that is independent of CENP-A. In striking contrast to mitosis, both oocyte meiotic divisions proceeded normally following depletion of either CENP-A or the closely associated centromeric protein CENP-C. These findings highlight a pronounced difference between the segregation of holocentric chromosomes during meiosis and mitosis and demonstrate the potential to uncouple assembly of outer-kinetochore proteins from CENP-A chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The kinetochore components CeCENP-A, CeCENP-C and KNL-1 are recruited to meiotic chromosomes during late pachytene/diplotene.
Figure 2: The targeting of CeCENP-C and KNL-1 to chromosomes during meiotic prophase requires CeCENP-A.
Figure 3: Conserved chromatin-proximal and outer-kinetochore components exhibit distinct localization patterns during meiosis.
Figure 4: Outer-kinetochore proteins still localize to the chromosome surface during meiosis in CeCENP-A-depleted embryos.
Figure 5: Embryos depleted of CeCENP-A or CeCENP-C exhibit normal meiotic segregation followed by a severe mitotic segregation defect.

Similar content being viewed by others

References

  1. Amor, D. J., Kalitsis, P., Sumer, H. & Choo, K. H. Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol. 14, 359–368 (2004).

    Article  CAS  Google Scholar 

  2. Mellone, B. G. & Allshire, R. C. Stretching it: putting the CEN(P-A) in centromere. Curr. Opin. Genet. Dev. 13, 191–198 (2003).

    Article  CAS  Google Scholar 

  3. Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20, 320–326 (2004).

    Article  CAS  Google Scholar 

  4. Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148–1153 (2000).

    Article  CAS  Google Scholar 

  5. Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biol. 3, 730–739 (2001).

    Article  CAS  Google Scholar 

  6. Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B. & Henikoff, S. A histone-H3-like protein in C. elegans. Nature 401, 547–548 (1999).

    Article  CAS  Google Scholar 

  7. Oegema, K., Desai, A., Rybina, S., Kirkham, M. & Hyman, A. A. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1226 (2001).

    Article  CAS  Google Scholar 

  8. Hauf, S. & Watanabe, Y. Kinetochore orientation in mitosis and meiosis. Cell 119, 317–327 (2004).

    Article  CAS  Google Scholar 

  9. Petronczki, M., Siomos, M. F. & Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).

    Article  CAS  Google Scholar 

  10. Pimpinelli, S. & Goday, C. Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet. 5, 310–315 (1989).

    Article  CAS  Google Scholar 

  11. Maddox, P. S., Oegema, K., Desai, A. & Cheeseman, I. M. “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res. 12, 641–653 (2004).

    Article  CAS  Google Scholar 

  12. Moore, L. L. & Roth, M. B. HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J. Cell Biol. 153, 1199–1208 (2001).

    Article  CAS  Google Scholar 

  13. Howe, M., McDonald, K. L., Albertson, D. G. & Meyer, B. J. HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. J. Cell Biol. 153, 1227–1238 (2001).

    Article  CAS  Google Scholar 

  14. Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255–2268 (2004).

    Article  CAS  Google Scholar 

  15. Albertson, D. G. & Thomson, J. N. The kinetochores of Caenorhabditis elegans. Chromosoma 86, 409–428 (1982).

    Article  CAS  Google Scholar 

  16. O'Toole, E. T. et al. Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans. J. Cell Biol. 163, 451–456 (2003).

    Article  CAS  Google Scholar 

  17. Albertson, D. G. & Thomson, J. N. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res. 1, 15–26 (1993).

    Article  CAS  Google Scholar 

  18. Comings, D. E. & Okada, T. A. Holocentric chromosomes in Oncopeltus: kinetochore plates are present in mitosis but absent in meiosis. Chromosoma 37, 177–192 (1972).

    Article  CAS  Google Scholar 

  19. Desai, A. et al. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev. 17, 2421–2435 (2003).

    Article  CAS  Google Scholar 

  20. Stein, L. D. et al. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1, E45 (2003).

    Article  Google Scholar 

  21. Hubbard, E. J. & Greenstein, D. The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Dev. Dyn. 218, 2–22 (2000).

    Article  CAS  Google Scholar 

  22. MacQueen, A. J., Colaiacovo, M. P., McDonald, K. & Villeneuve, A. M. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16, 2428–2442 (2002).

    Article  CAS  Google Scholar 

  23. Nabeshima, K., Villeneuve, A. M. & Colaiacovo, M. P. Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J. Cell Biol. 168, 683–689 (2005).

    Article  CAS  Google Scholar 

  24. Moore, L. L., Morrison, M. & Roth, M. B. HCP-1, a protein involved in chromosome segregation, is localized to the centromere of mitotic chromosomes in Caenorhabditis elegans. J. Cell Biol. 147, 471–480 (1999).

    Article  CAS  Google Scholar 

  25. Rogers, E., Bishop, J. D., Waddle, J. A., Schumacher, J. M. & Lin, R. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol. 157, 219–229 (2002).

    Article  CAS  Google Scholar 

  26. Bernard, P., Maure, J. F. & Javerzat, J. P. Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nature Cell Biol. 3, 522–526 (2001).

    Article  CAS  Google Scholar 

  27. Kitajima, T. S., Kawashima, S. A. & Watanabe, Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517 (2004).

    Article  CAS  Google Scholar 

  28. Oegema, K. & Hyman, A. in Wormbook (ed. The C. elegans Research Community). http://www.wormbook.org (2005).

    Google Scholar 

  29. Fukushige, T., Hendzel, M. J., Bazett-Jones, D. P. & McGhee, J. D. Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proc. Natl Acad. Sci. USA 96, 11883–11888 (1999).

    Article  CAS  Google Scholar 

  30. Hillers, K. J. & Villeneuve, A. M. Chromosome-wide control of meiotic crossing over in C. elegans. Curr. Biol. 13, 1641–1647 (2003).

    Article  CAS  Google Scholar 

  31. Chan, R. C., Severson, A. F. & Meyer, B. J. Condensin restructures chromosomes in preparation for meiotic divisions. J. Cell Biol. 167, 613–625 (2004).

    Article  CAS  Google Scholar 

  32. Edgar, L. G. Blastomere culture and analysis. Methods Cell Biol. 48, 303–321 (1995).

    Article  CAS  Google Scholar 

  33. Laiken, S. L., Gross, C. A. & Von Hippel, P. H. Equilibrium and kinetic studies of Escherichia coli lac repressor-inducer interactions. J. Mol. Biol. 66, 143–155 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. McGhee for strain JM93 and members of the Oegema and Desai laboratories for support and discussions. J.M. is supported by the University of California, San Diego Genetics Training Grant; P.S.M. is the Fayez Sarofim Fellow of the Damon Runyon Cancer Research; K.O. is a Pew Scholar in the Biomedical Sciences; A.D. is the Connie and Bob Lurie Scholar of the Damon Runyon Cancer Research Foundation. This work was supported, in part, by a grant from the National Institutes of Health to A.D. (R01GM074215-01); A.D. and K.O. also receive salary and additional support from the Ludwig Institute for Cancer Research. A.D. and K.O. made the preliminary observations that led to this study. P.S.M. helped to generate and characterize the GFP–CPAR-1 strain. F.H. analysed the relative expression of CENP-A-like proteins. J.M. performed all of the other experiments, and J.M., K.O. and A.D. jointly prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Desai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information Guide plus figures S1, S2, S3, S4 and S5 (PDF 591 kb)

Supplementary Information

Supplementary Movie S1 (MOV 598 kb)

Supplementary Information

Supplementary Movie S2 (MOV 1645 kb)

Supplementary Information

Supplementary Movie S3 (MOV 900 kb)

Supplementary Information

Supplementary Movie S4 (MOV 1380 kb)

Supplementary Information

Supplementary Movie S5 (MOV 604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monen, J., Maddox, P., Hyndman, F. et al. Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7, 1248–1255 (2005). https://doi.org/10.1038/ncb1331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing