Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loading history determines the velocity of actin-network growth

An Erratum to this article was published on 02 December 2005

Abstract

Directional polymerization of actin filaments in branched networks is one of the most powerful force-generating systems in eukaryotic cells1. Growth of densely cross-linked actin networks drives cell crawling2, intracellular transport of vesicles and organelles3,4, and movement of intracellular pathogens such as Listeria monocytogenes5. Using a modified atomic force microscope (AFM), we obtained force–velocity (Fv) measurements of growing actin networks in vitro until network elongation ceased at the stall force. We found that the growth velocity of a branched actin network against increasing forces is load-independent over a wide range of forces before a convex decline to stall. Surprisingly, when force was decreased on a growing network, the velocity increased to a value greater than the previous velocity, such that two or more stable growth velocities can exist at a single load. These results demonstrate that a single Fv relationship does not capture the complete behaviour of this system, unlike other molecular motors in cells, because the growth velocity depends on loading history rather than solely on the instantaneous load.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth of an actin network from an AFM cantilever.
Figure 2: Force–velocity relationship of actin-network growth under increasing forces.
Figure 3: Force-reduction experiments showing two stable velocities at a single force.

Similar content being viewed by others

References

  1. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 113, 549–549 (2003).

    Article  CAS  Google Scholar 

  2. Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature 352, 126–131 (1991).

    Article  CAS  Google Scholar 

  3. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  Google Scholar 

  4. Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72–74 (1999).

    Article  CAS  Google Scholar 

  5. Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria-Monocytogenes equals the rate of actin polymerization. Nature 357, 257–260 (1992).

    Article  CAS  Google Scholar 

  6. Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 4908–4913 (1999).

    Article  CAS  Google Scholar 

  7. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  CAS  Google Scholar 

  8. Upadhyaya, A. & van Oudenaarden, A. Biomimetic systems for studying actin-based motility. Curr. Biol. 13, R734–R744 (2003).

    Article  CAS  Google Scholar 

  9. Bustamante, C., Chemla, Y. R., Forde, N. R. & Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004).

    Article  CAS  Google Scholar 

  10. Dogterom, M. & Yurke, B. Measurement of the force–velocity relation for growing microtubules. Science 278, 856–860 (1997).

    Article  CAS  Google Scholar 

  11. Mogilner, A. & Oster, G. Force generation by actin polymerization II: The elastic ratchet and tethered filaments. Biophys. J. 84, 1591–1605 (2003).

    Article  CAS  Google Scholar 

  12. Mogilner, A. & Oster, G. Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996).

    Article  CAS  Google Scholar 

  13. Gerbal, F., Chaikin, P., Rabin, Y. & Prost, J. An elastic analysis of Listeria monocytogenes propulsion. Biophys. J. 79, 2259–2275 (2000).

    Article  CAS  Google Scholar 

  14. Carlsson, A. E. Growth velocities of branched actin networks. Biophys. J. 84, 2907–2918 (2003).

    Article  CAS  Google Scholar 

  15. Dickinson, R. B. & Purich, D. L. Clamped-filament elongation model for actin-based motors. Biophys. J. 82, 605–617 (2002).

    Article  CAS  Google Scholar 

  16. McGrath, J. L. et al. The force–velocity relationship for the actin-based motility of Listeria monocytogenes. Curr. Biol. 13, 329–332 (2003).

    Article  CAS  Google Scholar 

  17. Wiesner, S. et al. A biomimetic motility assay provides insight into the mechanism of actin-based motility. J. Cell Biol. 160, 387–398 (2003).

    Article  CAS  Google Scholar 

  18. Marcy, Y., Prost, J., Carlier, M. F. & Sykes, C. Forces generated during actin-based propulsion: A direct measurement by micromanipulation. Proc. Natl Acad. Sci. USA 101, 5992–5997 (2004).

    Article  CAS  Google Scholar 

  19. Cameron, L. A., Giardini, P. A., Soo, F. S. & Theriot, J. A. Secrets of actin-based motility revealed by a bacterial pathogen. Nature Rev. Mol. Cell Biol. 1, 110–119 (2000).

    Article  CAS  Google Scholar 

  20. Schwartz, I. M., Ehrenberg, M., Bindschadler, M. & McGrath, J. L. The role of substrate curvature in actin-based pushing forces. Curr. Biol. 14, 1094–1098 (2004).

    Article  CAS  Google Scholar 

  21. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  CAS  Google Scholar 

  22. Smith, D. E. et al. The bacteriophage phi 29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  CAS  Google Scholar 

  23. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics — piconewton forces and nanometer steps. Nature 368, 113–119 (1994).

    Article  CAS  Google Scholar 

  24. Hill, T. L. & Kirschner, M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int. Rev. Cytol. 78, 1–125 (1982).

    Article  CAS  Google Scholar 

  25. Spudich, J. A. & Watt, S. Regulation of rabbit skeletal muscle contraction.1. Biochemical studies of interaction of Tropomyosin–Troponin complex with actin and proteolytic fragments of Myosin. J. Biol. Chem. 246, 4866–4871 (1971).

    CAS  Google Scholar 

  26. Kellogg, D. R., Mitchison, T. J. & Alberts, B. M. Behavior of microtubules and actin-filaments in living Drosophila embryos. Development 103, 675–686 (1988).

    CAS  PubMed  Google Scholar 

  27. Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. W. Shaevitz, A. P. Liu, and J. L. Choy for helpful discussions and careful reading of the manuscript, as well as the entire Fletcher laboratory for support. We are also grateful to R. L. Jeng, C. Le Clainche, and M. J. Footer for assistance in protein preparation. This work was supported by a National Defense Science and Engineering Graduate Fellowship to O.C. and an National Science Foundation Career Award to D.A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Fletcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information and Reference plus Supplementary figures S1, S2 and S3 (PDF 672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parekh, S., Chaudhuri, O., Theriot, J. et al. Loading history determines the velocity of actin-network growth. Nat Cell Biol 7, 1219–1223 (2005). https://doi.org/10.1038/ncb1336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing