Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation

Abstract

The γ-tubulin ring complex (γTuRC) is a large multi-protein complex that is required for microtubule nucleation from the centrosome. Here, we show that the GCP-WD protein (originally named NEDD1) is the orthologue of the Drosophila Dgrip71WD protein, and is a subunit of the human γTuRC. GCP-WD has the properties of an attachment factor for the γTuRC: depletion or inhibition of GCP-WD results in loss of the γTuRC from the centrosome, abolishing centrosomal microtubule nucleation, although the γTuRC is intact and able to bind to microtubules. GCP-WD depletion also blocks mitotic chromatin-mediated microtubule nucleation, resulting in failure of spindle assembly. Mitotic phosphorylation of GCP-WD is required for association of γ-tubulin with the spindle, separately from association with the centrosome. Our results indicate that GCP-WD broadly mediates targeting of the γTuRC to sites of microtubule nucleation and to the mitotic spindle, which is essential for spindle formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GCP-WD is a component of the γTuRC.
Figure 2: GCP-WD is required for centrosomal γ-tubulin localization.
Figure 3: The γTuRC is stable and able to bind to microtubules in the absence of GCP-WD.
Figure 4: GCP-WD function is required for centrosomal microtubule nucleation.
Figure 5: GCP-WD functions in centrosomal- and chromatin-mediated microtubule nucleation and is required for spindle formation.
Figure 6: Mitotic phosphorylation of GCP-WD is important for spindle formation.
Figure 7: GCP-WD and γ-tubulin colocalize to chromatin-derived spindle microtubules.
Figure 8: GCP-WD phosphorylation is required for mitotic-spindle formation, but not for centrosomal nucleation.

Similar content being viewed by others

References

  1. Murphy, S. M., Urbani, L. & Stearns, T. The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J. Cell Biol. 141, 663–674 (1998).

    Article  CAS  Google Scholar 

  2. Fava, F. et al. Human 76p: A new member of the γ-tubulin-associated protein family. J. Cell Biol. 147, 857–868 (1999).

    Article  CAS  Google Scholar 

  3. Murphy, S. M. et al. GCP5 and GCP6: two new members of the human γ-tubulin complex. Mol. Biol. Cell 12, 3340–3352 (2001).

    Article  CAS  Google Scholar 

  4. Jeng, R. & Stearns, T. γ-tubulin complexes: size does matter. Trends Cell Biol. 9, 339–342 (1999).

    Article  CAS  Google Scholar 

  5. Tassin, A. M., Maro, B. & Bornens, M. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100, 35–46 (1985).

    Article  CAS  Google Scholar 

  6. Bugnard, E., Zaal, K. J. & Ralston, E. Reorganization of microtubule nucleation during muscle differentiation. Cell Motil. Cytoskeleton 60, 1–13 (2005).

    Article  Google Scholar 

  7. Vaughn, K. C. & Harper, J. D. Microtubule-organizing centers and nucleating sites in land plants. Int. Rev. Cytol. 181, 75–149 (1998).

    Article  CAS  Google Scholar 

  8. Khodjakov, A. & Rieder, C. L. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585–596 (1999).

    Article  CAS  Google Scholar 

  9. Liu, B., Marc, J., Joshi, H. C. & Palevitz, B. A. A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J. Cell Sci. 104, 1217–1228 (1993).

    CAS  PubMed  Google Scholar 

  10. Lajoie-Mazenc, I. et al. Recruitment of antigenic γ-tubulin during mitosis in animal cells: presence of γ-tubulin in the mitotic spindle. J. Cell Sci. 107, 2825–2837 (1994).

    CAS  PubMed  Google Scholar 

  11. Tassin, A. M., Celati, C., Moudjou, M. & Bornens, M. Characterization of the human homologue of the yeast spc98p and its association with γ-tubulin. J. Cell Biol. 141, 689–701 (1998).

    Article  CAS  Google Scholar 

  12. Wiese, C. & Zheng, Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nature Cell Biol. 2, 358–364 (2000).

    Article  CAS  Google Scholar 

  13. Gunawardane, R. N., Martin, O. C. & Zheng, Y. Characterization of a new γTuRC subunit with WD repeats. Mol. Biol. Cell 14, 1017–1026 (2003).

    Article  CAS  Google Scholar 

  14. Kumar, S., Matsuzaki, T., Yoshida, Y. & Noda, M. Molecular cloning and biological activity of a novel developmentally regulated gene encoding a protein with β-transducin-like structure. J. Biol. Chem. 269, 11318–11326 (1994).

    CAS  PubMed  Google Scholar 

  15. Takai, S., Yoshida, Y., Noda, M., Yamada, K. & Kumar, S. Assignment of the developmentally regulated gene NEDD1 to human chromosome 12q22 by fluorescence in situ hybridization. Hum. Genet. 95, 96–98 (1995).

    Article  CAS  Google Scholar 

  16. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 (1995).

    Article  CAS  Google Scholar 

  17. Li, Q. & Joshi, H. C. γ-tubulin is a minus end-specific microtubule binding protein. J. Cell Biol. 131, 207–214 (1995).

    Article  CAS  Google Scholar 

  18. Gunawardane, R. N. et al. Characterization and reconstitution of Drosophila γ-tubulin ring complex subunits. J. Cell Biol. 151, 1513–1524 (2000).

    Article  CAS  Google Scholar 

  19. Witt, P. L., Ris, H. & Borisy, G. G. Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma 81, 483–505 (1980).

    Article  CAS  Google Scholar 

  20. De Brabander, M., Geuens, G., De Mey, J. & Joniau, M. Nucleated assembly of mitotic microtubules in living PTK2 cells after release from nocodazole treatment. Cell Motil. 1, 469–483 (1981).

    Article  CAS  Google Scholar 

  21. Czaban, B. B. & Forer, A. The kinetic polarities of spindle microtubules in vivo, in crane-fly spermatocytes. I. Kinetochore microtubules that re-form after treatment with colcemid. J. Cell Sci. 79, 1–37 (1985).

    CAS  PubMed  Google Scholar 

  22. Hannak, E. et al. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent. J. Cell Biol. 157, 591–602 (2002).

    Article  CAS  Google Scholar 

  23. Meijer, L. et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527–536 (1997).

    Article  CAS  Google Scholar 

  24. Gray, N. S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  CAS  Google Scholar 

  25. Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D. & Borisy, G. G. Microtubule release from the centrosome. Proc. Natl Acad. Sci. USA 94, 5078–5083 (1997).

    Article  CAS  Google Scholar 

  26. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    Article  CAS  Google Scholar 

  27. Dammermann, A., Desai, A. & Oegema, K. The minus end in sight. Curr. Biol. 13, R614–R624 (2003).

    Article  CAS  Google Scholar 

  28. Takahashi, M., Yamagiwa, A., Nishimura, T., Mukai, H. & Ono, Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 13, 3235–3245 (2002).

    Article  CAS  Google Scholar 

  29. Zimmerman, W. C., Sillibourne, J., Rosa, J. & Doxsey, S. J. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657 (2004).

    Article  CAS  Google Scholar 

  30. Nachury, M. V. et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106 (2001).

    Article  CAS  Google Scholar 

  31. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–93 (2001).

    Article  CAS  Google Scholar 

  32. Gruss, O. J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nature Cell Biol. 4, 871–879 (2002).

    Article  CAS  Google Scholar 

  33. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 (1999).

    Article  CAS  Google Scholar 

  34. Groen, A. C. et al. XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr. Biol. 14, 1801–1811 (2004).

    Article  CAS  Google Scholar 

  35. Buster, D., McNally, K. & McNally, F. J. Katanin inhibition prevents the redistribution of γ-tubulin at mitosis. J. Cell Sci. 115, 1083–1092 (2002).

    CAS  PubMed  Google Scholar 

  36. Mastronarde, D. N., McDonald, K. L., Ding, R. & McIntosh, J. R. Interpolar spindle microtubules in PTK cells. J. Cell Biol. 123, 1475–1489 (1993).

    Article  CAS  Google Scholar 

  37. Janson, M. E., Setty, T. G., Paoletti, A. & Tran, P. T. Efficient formation of bipolar microtubule bundles requires microtubule-bound γ-tubulin complexes. J. Cell Biol. 169, 297–308 (2005).

    Article  CAS  Google Scholar 

  38. Murata, T. et al. Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nature Cell Biol. 7, 961–968 (2005).

    Article  CAS  Google Scholar 

  39. Donaldson, M. M., Tavares, A. A., Ohkura, H., Deak, P. & Glover, D. M. Metaphase arrest with centromere separation in polo mutants of Drosophila. J. Cell Biol. 153, 663–676 (2001).

    Article  CAS  Google Scholar 

  40. Lane, H. A. & Nigg, E. A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135, 1701–1713 (1996).

    Article  CAS  Google Scholar 

  41. Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    Article  CAS  Google Scholar 

  42. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  43. Stearns, T., Evans, L. & Kirschner, M. γ-tubulin is a highly conserved component of the centrosome. Cell 65, 825–836 (1991).

    Article  CAS  Google Scholar 

  44. Jordan, M., Schallhorn, A. & Wurm, F. M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24, 596–601 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Meng-Fu Tsou for helpful discussions. This work was supported by a National Institutes of Health grant (GM52022) to T.S., and a postdoctoral fellowship from the German Academy of Natural Scientists Leopoldina (BMBF-LPD 9901/8-91) to J.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Stearns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 1556 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüders, J., Patel, U. & Stearns, T. GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat Cell Biol 8, 137–147 (2006). https://doi.org/10.1038/ncb1349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1349

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing