Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Arabidopsis HT1 kinase controls stomatal movements in response to CO2

An Erratum to this article was published on 01 April 2006

Abstract

Guard cells, which form stomata in leaf epidermes, sense a multitude of environmental signals and integrate this information to regulate stomatal movements1,2. Compared with the advanced understanding of light and water stress responses in guard cells2,3,4, the molecular mechanisms that underlie stomatal CO2 signalling have remained relatively obscure. With a high-throughput leaf thermal imaging CO2 screen, we report the isolation of two allelic Arabidopsis mutants (high leaf temperature 1; ht1-1 and ht1-2) that are altered in their ability to control stomatal movements in response to CO2. The strong allele, ht1-2, exhibits a markedly impaired CO2 response but shows functional responses to blue light, fusicoccin and abscisic acid (ABA), indicating a role for HT1 in stomatal CO2 signalling. HT1 encodes a protein kinase that is expressed mainly in guard cells. Phosphorylation assays demonstrate that the activity of the HT1 protein carrying the ht1-1 or ht1-2 mutation is greatly impaired or abolished, respectively. Furthermore, dominant-negative HT1(K113W) transgenic plants, which lack HT1 kinase activity, show a disrupted CO2 response. These findings indicate that the HT1 kinase is important for regulation of stomatal movements and its function is more pronounced in response to CO2 than it is to ABA or light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in leaf temperature of wild-type plants and ht1 mutants in response to CO2 concentration.
Figure 2: Light responses in ht1 mutants at ambient external CO2 concentration.
Figure 3: ht1 mutants show abscisic acid responses.
Figure 4: HT1 is a protein kinase expressed in guard cells.
Figure 5: HT1 kinase activity correlates with CO2 sensitivity.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Willmer, C. M. & Fricker, M. D. Stomata 2nd edn (Chapman & Hall, London, 1996).

    Book  Google Scholar 

  2. MacRobbie, E. A. C. Signal transduction and ion channels in guard cells. Phil. Trans. R. Soc. Lond. B. 353, 1475–1488 (1998).

    Article  CAS  Google Scholar 

  3. Schroeder, J. I., Kwak, J. M. & Allen, G. J. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410, 327–330 (2001).

    Article  CAS  Google Scholar 

  4. Kinoshita, T et al. Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656–660 (2001).

    Article  CAS  Google Scholar 

  5. Morison, J. I. L. in: Stomatal Function (eds Zeiger, E., Farquhar, G. D. and Cowan, I. R.) 229–251 (Stanford Univ. Press, California, 1987).

    Google Scholar 

  6. Legget, J., Pepper, W. J. & Swart, R. J. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment 69–95 (Cambridge Univ. Press, Cambridge, UK, 1992).

    Google Scholar 

  7. Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).

    Article  Google Scholar 

  8. Schroeder, J. I., Allen, G. J., Hugouvieux, V., Kwak, J. M. & Waner, D. Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 627–658 (2001).

    Article  CAS  Google Scholar 

  9. Vavasseur, A. & Raghavendra, A. S. Guard cell metabolism and CO2 sensing. New Phytol. 165, 665–682 (2005).

    Article  CAS  Google Scholar 

  10. Webb, A. A. R., McAinsh, M. R., Mansfield, T. A. & Hetherington, A. M. Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J. 9, 297–304 (1996).

    Article  CAS  Google Scholar 

  11. Schwartz, A., Ilan, N. & Grantz, D. A. Calcium effects on stomatal movement in Commelina communis L. — use of EGTA to modulate stomatal response to light, KCl and CO2 . Plant Physiol. 87, 583–587 (1988).

    Article  CAS  Google Scholar 

  12. Brearley, J., Venis, M. A. & Blatt, M. R. The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta 203, 145–154 (1997).

    Article  CAS  Google Scholar 

  13. Assmann, S. M. The cellular basis of guard cell sensing of rising CO2 . Plant Cell Environ. 22, 629–637 (1999).

    Article  CAS  Google Scholar 

  14. Hanstein, S. M. & Felle, H. H. CO2-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. Plant Physiol. 130, 940–950 (2002).

    Article  CAS  Google Scholar 

  15. Raschke, K., Shabahang, M. & Wolf, R. The slow and the quick anion conductance in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2 . Planta 217, 639–650 (2003).

    Article  CAS  Google Scholar 

  16. Merlot, S. et al. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 30, 601–609 (2002).

    Article  CAS  Google Scholar 

  17. Kinoshita, T. & Shimazaki, K. Analysis of the phosphorylation level in guard-cell plasma membrane H+-ATPase in response to fusicoccin. Plant Cell Physiol. 42, 424–432 (2001).

    Article  CAS  Google Scholar 

  18. Olsen, R. L., Pratt, R. B., Gump, P., Kemper, A. & Tallman, G. Red light activates a chloroplast-dependent ion uptake mechanism for stomatal opening under reduced CO2 concentrations in Vicia spp. New Phytol. 153, 497–508 (2002).

    Article  CAS  Google Scholar 

  19. Roelfsema, M. R. G., Hanstein, S., Felle, H. H. & Hedrich, R. CO2 provides an intermediate link in the red light response of guard cells. Plant J. 32, 65–75 (2002).

    Article  CAS  Google Scholar 

  20. Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S. & McCourt, P. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273, 1239–1241 (1996).

    Article  CAS  Google Scholar 

  21. Pei, Z.-M., Ghassemian, M., Kwak, C. M., McCourt, P. & Schroeder, J. I. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282, 287–290 (1998).

    Article  CAS  Google Scholar 

  22. Leonhardt, N. et al. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16, 596–615 (2004).

    Article  CAS  Google Scholar 

  23. Hanks, S. K., Quinn, A. M. & Hunter, T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).

    Article  CAS  Google Scholar 

  24. Soyano, T., Nishihama, R., Morikiyo, K., Ishikawa, M. & Machida, Y. NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev. 17, 1055–1067 (2003).

    Article  CAS  Google Scholar 

  25. Takekawa, M. & Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95, 521–530 (1998).

    Article  CAS  Google Scholar 

  26. Li, J., Wang, X.-Q., Watson, M. B. & Assmann, S. M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287, 300–303 (2000).

    Article  CAS  Google Scholar 

  27. Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A. & Ecker, J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72, 427–441 (1993).

    Article  CAS  Google Scholar 

  28. Hua, J. & Meyerowitz, E. M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94, 261–271 (1998).

    Article  CAS  Google Scholar 

  29. Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).

    Article  CAS  Google Scholar 

  30. Guo, F.-Q., Young, J. & Crawford, N. M. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 15, 107–117 (2003).

    Article  CAS  Google Scholar 

  31. Pei, Z.-M., Kuchitsu, K., Ward, J. M., Schwarz, M. & Schroeder, J. I. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9, 409–423 (1997).

    Article  CAS  Google Scholar 

  32. Sugimoto, H. et al. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol. 45, 985–996 (2004).

    Article  CAS  Google Scholar 

  33. Mustilli, A.-C., Merlot, S., Vavasseur, A., Fenzi, F. & Giraudat, J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089–3099 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Machida and K. Harada, K.M. Kawano, E. Kasuya and all of the members of our laboratories for technical assistance and discussion. We also thank the Arabidopsis Biological Resource Center and Cereon Genomics for access to polymorphism information. This research was supported by CREST, JST and the Japan Society of the Promotion of Science (17370019) grants (K.I.), and by National Science Foundation (MCB0417118) and the National Institutes of Health (R01GM060396) grants (J.I.S.).M.I. is a Formas post-doctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh Iba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure S1 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, M., Negi, J., Young, J. et al. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8, 391–397 (2006). https://doi.org/10.1038/ncb1387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing