Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular architecture of a kinetochore–microtubule attachment site

Abstract

Kinetochore attachment to spindle microtubule plus-ends is necessary for accurate chromosome segregation during cell division in all eukaryotes. The centromeric DNA of each chromosome is linked to microtubule plus-ends by eight structural-protein complexes1,2,3,4,5,6,7,8,9. Knowing the copy number of each of these complexes at one kinetochore–microtubule attachment site is necessary to understand the molecular architecture of the complex, and to elucidate the mechanisms underlying kinetochore function. We have counted, with molecular accuracy, the number of structural protein complexes in a single kinetochore–microtubule attachment using quantitative fluorescence microscopy of GFP-tagged kinetochore proteins in the budding yeast Saccharomyces cerevisiae. We find that relative to the two Cse4p molecules in the centromeric histone1, the copy number ranges from one or two for inner kinetochore proteins such as Mif2p2, to 16 for the DAM–DASH complex8,9 at the kinetochore–microtubule interface. These counts allow us to visualize the overall arrangement of a kinetochore–microtubule attachment. As most of the budding yeast kinetochore proteins have homologues in higher eukaryotes, including humans, this molecular arrangement is likely to be replicated in more complex kinetochores that have multiple microtubule attachments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization and turnover of kinetochore proteins in metaphase and in anaphase–telophase.
Figure 2: Characterization of the intensity distribution of a kinetochore cluster.
Figure 3: Linearity and sensitivity of the measurement technique.
Figure 4: A schematic representation of the possible architecture of a kinetochore–microtubule attachment site in metaphase.

Similar content being viewed by others

References

  1. Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M. M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94, 607–613 (1998).

    Article  CAS  Google Scholar 

  2. Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).

    Article  CAS  Google Scholar 

  3. Espelin, C. W., Kaplan, K. B. & Sorger, P. K. Probing the architecture of a simple kinetochore using DNA–protein crosslinking. J. Cell Biol. 139, 1383–1396 (1997).

    Article  CAS  Google Scholar 

  4. Ortiz, J., Stemmann, O., Rank, S. & Lechner, J. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13, 1140–1155 (1999).

    Article  CAS  Google Scholar 

  5. Nekrasov, V. S., Smith, M. A., Peak-Chew, S. & Kilmartin, J. V. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 4931–4946 (2003).

    Article  CAS  Google Scholar 

  6. Euskirchen, G. M. Nnf1p, Dsn1p, Mtw1p, and Nsl1p: a new group of proteins important for chromosome segregation in Saccharomyces cerevisiae. Eukaryot. Cell 1, 229–240 (2002).

    Article  CAS  Google Scholar 

  7. Wei, R. R., Sorger, P. K. & Harrison, S. C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl Acad. Sci. USA 102, 5363–5367 (2005).

    Article  CAS  Google Scholar 

  8. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  Google Scholar 

  9. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005).

    Article  CAS  Google Scholar 

  10. Chan, G. K., Liu, S. T. & Yen, T. J. Kinetochore structure and function. Trends Cell Biol. 15, 589–598 (2005).

    Article  CAS  Google Scholar 

  11. McAinsh, A. D., Tytell, J. D. & Sorger, P. K. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol. 19, 519–539 (2003).

    Article  CAS  Google Scholar 

  12. Pearson, C. G., Maddox, P. S., Salmon, E. D. & Bloom, K. Budding yeast chromosome structure and dynamics during mitosis. J. Cell Biol. 152, 1255–1266 (2001).

    Article  CAS  Google Scholar 

  13. Collins, K. A., Furuyama, S. & Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14, 1968–1972 (2004).

    Article  CAS  Google Scholar 

  14. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    Article  CAS  Google Scholar 

  15. DeLuca, J. G. et al. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell 16, 519–531 (2005).

    Article  CAS  Google Scholar 

  16. Wu, J. Q. & Pollard, T. D. Counting cytokinesis proteins globally and locally in fission yeast. Science 310, 310–314 (2005).

    Article  CAS  Google Scholar 

  17. Pearson, C. G. et al. Stable kinetochore–microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14, 1962–1967 (2004).

    Article  CAS  Google Scholar 

  18. Nishihashi, A. et al. CENP-I is essential for centromere function in vertebrate cells. Dev. Cell 2, 463–476 (2002).

    Article  CAS  Google Scholar 

  19. Hori, T., Haraguchi, T., Hiraoka, Y., Kimura, H. & Fukagawa, T. Dynamic behavior of Nuf2–Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J. Cell Sci. 116, 3347–3362 (2003).

    Article  CAS  Google Scholar 

  20. Yang, S. S., Yeh, E., Salmon, E. D. & Bloom, K. Identification of a mid-anaphase checkpoint in budding yeast. J. Cell Biol. 136, 345–354 (1997).

    Article  CAS  Google Scholar 

  21. Ciferri, C. et al. Architecture of the human ndc80–hec1 complex, a critical constituent of the outer kinetochore. J. Biol. Chem. 280, 29088–29095 (2005).

    Article  CAS  Google Scholar 

  22. Russell, I. D., Grancell, A. S. & Sorger, P. K. The unstable F-box protein p58–Ctf13 forms the structural core of the CBF3 kinetochore complex. J. Cell Biol. 145, 933–950 (1999).

    Article  CAS  Google Scholar 

  23. Espelin, C. W., Simons, K. T., Harrison, S. C. & Sorger, P. K. Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol. Biol. Cell 14, 4557–4568 (2003).

    Article  CAS  Google Scholar 

  24. Chen, Y. et al. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol. Cell Biol. 20, 7037–7048 (2000).

    Article  CAS  Google Scholar 

  25. Shang, C. et al. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol. Biol. Cell 14, 3342–3355 (2003).

    Article  CAS  Google Scholar 

  26. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  27. Maddox, P. S., Bloom, K. S. & Salmon, E. D. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nature Cell Biol. 2, 36–41 (2000).

    Article  CAS  Google Scholar 

  28. Zinkowski, R. P., Meyne, J. & Brinkley, B. R. The centromere–kinetochore complex: a repeat subunit model. J. Cell Biol. 113, 1091–1110 (1991).

    Article  CAS  Google Scholar 

  29. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  30. Roumanie, O. et al. Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J. Cell Biol. 170, 583–594 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hunt, D. Odde, S. Inoué, and members of the Salmon and Bloom laboratory for helpful comments on the manuscript. This work was supported by National Institutes of Health (NIH) grants to K.S.B. (GM32238), and to E.D.S. (GM24364 and GM60678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Salmon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Notes, Tables S1, S2, S3 and S4, Figures S1, S2, S3, S4, S5 and S6 (PDF 429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joglekar, A., Bouck, D., Molk, J. et al. Molecular architecture of a kinetochore–microtubule attachment site. Nat Cell Biol 8, 581–585 (2006). https://doi.org/10.1038/ncb1414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing