Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery

Abstract

A quality-control system surveys the lumen of the endoplasmic reticulum for terminally misfolded proteins. Polypeptides singled out by this system are ultimately degraded by the cytosolic ubiquitin-proteasome pathway. Key components of both the endoplasmic reticulum quality-control system and the degradation machinery have been identified, but a connection between the two systems has remained elusive. Here, we report an association between the endoplasmic reticulum quality-control lectin Yos9p and Hrd3p, a component of the ubiquitin-proteasome system that links these pathways. We identify designated regions in the luminal domain of Hrd3p that interact with Yos9p and the ubiquitin ligase Hrd1p. Binding of misfolded proteins occurs through Hrd3p, suggesting that Hrd3p recognises proteins that deviate from their native conformation, whereas Yos9p ensures that only terminally misfolded polypeptides are degraded.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Yos9p is a component of the HRD ligase.
Figure 2: Yos9p is an integral subunit of the HRD ligase.
Figure 3: The endoplasmic reticulum luminal domain of Hrd3p comprises distinct binding regions for Hrd1p and Yos9p.
Figure 4: Yos9p binds Hrd3p through a region adjacent to its MRH domain.
Figure 5: Recruitment of CPY* to the HRD ligase occurs independently of Yos9p.

Similar content being viewed by others

References

  1. Hebert, D. N., Garman, S. C. & Molinari, M. The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol. 15, 364–370 (2005).

    Article  CAS  Google Scholar 

  2. Hitt, R. & Wolf, D. H. DER7, encoding α-glucosidase I is essential for degradation of malfolded glycoproteins of the endoplasmic reticulum. FEMS Yeast Res. 4, 815–820 (2004).

    Article  CAS  Google Scholar 

  3. Bhamidipati, A., Denic, V., Quan, E. M. & Weissman, J. S. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell 19, 741–751 (2005).

    Article  CAS  Google Scholar 

  4. Friedmann, E., Salzberg, Y., Weinberger, A., Shaltiel, S. & Gerst, J. E. YOS9, the putative yeast homolog of a gene amplified in osteosarcomas, is involved in the endoplasmic reticulum (ER)-Golgi transport of GPI-anchored proteins. J. Biol. Chem. 277, 35274–35281 (2002).

    Article  CAS  Google Scholar 

  5. Jakob, C. A. et al. Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep. 2, 423–430 (2001).

    Article  CAS  Google Scholar 

  6. Kim, W., Spear, E. D. & Ng, D. T. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 19, 753–764 (2005).

    Article  CAS  Google Scholar 

  7. Nakatsukasa, K., Nishikawa, S., Hosokawa, N., Nagata, K. & Endo, T. Mnl1p, an α -mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J. Biol. Chem. 276, 8635–8638 (2001).

    Article  CAS  Google Scholar 

  8. Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P. & Jakob, C. A. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19, 765–775 (2005).

    Article  CAS  Google Scholar 

  9. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nature Cell Biol. 7, 766–772 (2005).

    Article  CAS  Google Scholar 

  10. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001).

    Article  CAS  Google Scholar 

  11. Deak, P. M. & Wolf, D. H. Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J. Biol. Chem. 276, 10663–10669 (2001).

    Article  CAS  Google Scholar 

  12. Gardner, R. G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151, 69–82 (2000).

    Article  CAS  Google Scholar 

  13. Plemper, R. K. et al. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J. Cell. Sci. 112, 4123–34 (1999).

    CAS  PubMed  Google Scholar 

  14. Gauss, R., Sommer, T. & Jarosch, E. The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment. EMBO J. 25, 1827–1835 (2006).

    Article  CAS  Google Scholar 

  15. Ponting, C. P. Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. Biochem J. 351, 527–535 (2000).

    Article  CAS  Google Scholar 

  16. Pelham, H. R. The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem. Sci. 15, 483–486 (1990).

    Article  Google Scholar 

  17. Kostova, Z. & Wolf, D. H. Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J. Cell Sci. 118, 1485–1492 (2005).

    Article  CAS  Google Scholar 

  18. Spear, E. D. & Ng, D. T. Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation. J. Cell Biol. 169, 73–82 (2005).

    Article  CAS  Google Scholar 

  19. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  20. Gemmill, T. R. & Trimble, R. B. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta. 1426, 227–237 (1999).

    Article  CAS  Google Scholar 

  21. Ausubel, F. M. (ed.) Current Protocols in Molecular Biology (John Wiley & Sons, Inc., New York. 1993–2006).

    Google Scholar 

  22. Gauss, R., Trautwein, M., Sommer, T. & Spang, A. New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae. Yeast 22, 1–12 (2005).

    Article  CAS  Google Scholar 

  23. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  24. Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999).

    Article  CAS  Google Scholar 

  25. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  Google Scholar 

  26. Gueldener, U., Heinisch, J., Koehler, G. J., Voss, D. & Hegemann, J. H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30, e23 (2002).

    Article  CAS  Google Scholar 

  27. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  28. Meusser, B. & Sommer, T. Vpu-mediated degradation of CD4 reconstituted in yeast reveals mechanistic differences to cellular ER-associated protein degradation. Mol. Cell 14, 247–258 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Volkwein and A. Wittstruck for excellent technical assistance and D. H. Wolf for providing plasmids and reagents. Part of this work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) and the EU Network of Excellence RUBICON. R.G. thanks the Boehringer Ingelheim Fonds for support.

Author information

Authors and Affiliations

Authors

Contributions

The experimental concept was developed by C.H., R.G. and E.J. T.S. guided the project planning. R.G. performed all experiments except Fig. 1c and d (E.J.) and Fig. 5b (C.H.). C.H. wrote the manuscript.

Corresponding author

Correspondence to Thomas Sommer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2 and S3 (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauss, R., Jarosch, E., Sommer, T. et al. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 8, 849–854 (2006). https://doi.org/10.1038/ncb1445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing