Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner

Abstract

The microtubule cytoskeleton and the mitotic spindle are highly dynamic structures1, yet their sizes are remarkably constant, thus indicating that the growth and shrinkage of their constituent microtubules are finely balanced2,3. This balance is achieved, in part, through kinesin-8 proteins (such as Kip3p in budding yeast and KLP67A in Drosophila) that destabilize microtubules3,4,5,6,7,8. Here, we directly demonstrate that Kip3p destabilizes microtubules by depolymerizing them — accounting for the effects of kinesin-8 perturbations on microtubule and spindle length observed in fungi and metazoan cells. Furthermore, using single-molecule microscopy assays9, we show that Kip3p has several properties that distinguish it from other depolymerizing kinesins, such as the kinesin-13 MCAK10,11. First, Kip3p disassembles microtubules exclusively at the plus end and second, remarkably, Kip3p depolymerizes longer microtubules faster than shorter ones. These properties are consequences of Kip3p being a highly processive, plus-end-directed motor12, both in vitro and in vivo. Length-dependent depolymerization provides a new mechanism for controlling the lengths of subcellular structures13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kip3p-dependent microtubule depolymerization.
Figure 2: Comparison of microtubule depolymerization by Kip3p and MCAK.
Figure 3: Kip3p is a highly processive plus-end directed motor that pauses at the plus ends of microtubules.
Figure 4: Kip3p is a highly persistent plus-end-directed motor in vivo.

Similar content being viewed by others

References

  1. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).

    Article  CAS  Google Scholar 

  2. Hildebrandt, E. R. & Hoyt, M. A. Mitotic motors in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1496, 99–116 (2000).

    Article  CAS  Google Scholar 

  3. Goshima, G., Wollman, R., Stuurman, N., Scholey, J. M. & Vale, R. D. Length control of the metaphase spindle. Curr. Biol. 15, 1979–1988 (2005).

    Article  CAS  Google Scholar 

  4. Cottingham, F. R. & Hoyt, M. A. Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J. Cell Biol. 138, 1041–1053 (1997).

    Article  CAS  Google Scholar 

  5. Miller, R. K. et al. The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol. Biol. Cell 9, 2051–2068 (1998).

    Article  CAS  Google Scholar 

  6. Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143, 687–694 (1998).

    Article  CAS  Google Scholar 

  7. Rischitor, P. E., Konzack, S. & Fischer, R. The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot. Cell 3, 632–645 (2004).

    Article  CAS  Google Scholar 

  8. West, R. R., Malmstrom, T., Troxell, C. L. & McIntosh, J. R. Two related kinesins, klp5+ and klp6+, foster microtubule disassembly and are required for meiosis in fission yeast. Mol. Biol. Cell 12, 3919–3932 (2001).

    Article  CAS  Google Scholar 

  9. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006).

    Article  CAS  Google Scholar 

  10. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  Google Scholar 

  11. Hunter, A. W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457 (2003).

    Article  CAS  Google Scholar 

  12. Pereira, A. J., Dalby, B., Stewart, R. J., Doxsey, S. J. & Goldstein, L. S. Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J. Cell Biol. 136, 1081–1090 (1997).

    Article  CAS  Google Scholar 

  13. Marshall, W. F. Cellular length control systems. Annu. Rev. Cell Dev. Biol. 20, 677–693 (2004).

    Article  CAS  Google Scholar 

  14. Goshima, G. & Vale, R. D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016 (2003).

    Article  CAS  Google Scholar 

  15. Savoian, M. S., Gatt, M. K., Riparbelli, M. G., Callaini, G. & Glover, D. M. Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. J. Cell Sci. 117, 3669–3677 (2004).

    Article  CAS  Google Scholar 

  16. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996).

    Article  CAS  Google Scholar 

  17. Maney, T., Wagenbach, M. & Wordeman, L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J. Biol. Chem. 276, 34753–34758 (2001).

    Article  CAS  Google Scholar 

  18. Lawrence, C. J., Malmberg, R. L., Muszynski, M. G. & Dawe, R. K. Maximum likelihood methods reveal conservation of function among closely related kinesin families. J. Mol. Evol. 54, 42–53 (2002).

    Article  CAS  Google Scholar 

  19. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N. & Mitchison, T. J. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167 (1992).

    Article  CAS  Google Scholar 

  20. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton. 367 (Sinauer Associates, Sunderland, MA, 2001).

    Google Scholar 

  21. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  CAS  Google Scholar 

  22. Sakamoto, T., Amitani, I., Yokota, E. & Ando, T. Direct observation of processive movement by individual myosin V molecules. Biochem. Biophys. Res. Commun. 272, 586–590 (2000).

    Article  CAS  Google Scholar 

  23. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    Article  CAS  Google Scholar 

  24. Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005).

    Article  CAS  Google Scholar 

  25. Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003).

    Article  CAS  Google Scholar 

  26. Dogterom, M., Felix, M. A., Guet, C. C. & Leibler, S. Influence of M-phase chromatin on the anisotropy of microtubule asters. J. Cell Biol. 133, 125–140 (1996).

    Article  CAS  Google Scholar 

  27. Bringmann, H. et al. A kinesin-like motor inhibits microtubule dynamic instability. Science 303, 1519–1522 (2004).

    Article  CAS  Google Scholar 

  28. Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427 (2005).

    Article  CAS  Google Scholar 

  29. Bressan, D. A., Vazquez, J. & Haber, J. E. Mating type-dependent constraints on the mobility of the left arm of yeast chromosome III. J. Cell Biol. 164, 361–371 (2004).

    Article  CAS  Google Scholar 

  30. Maekawa, H., Usui, T., Knop, M. & Schiebel, E. Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO J. 22, 438–449 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Ciosk, J.E. Harber, K. Nasmyth, E. Schiebel, R. Tsien, F. Uhlmann and M. van Breugel for reagents, G. Brouhard, S. Diez, D. Drechsel, R. Hartman and Y. Kitamura for technical help, Y. Kalaidzidis for the motion tracking program, and V. Bormuth, G. Brouhard, S. Endow, E. Schaeffer and J. Stear for comments on an earlier draft of this manuscript. V.V., J.H., A.A.H. and J.H. were supported by the Max Planck Society and the National Institutes of Health. K.T. and T.T. were supported by Cancer Research UK, The Wellcome Trust, Human Frontier Science Program and a Lister Research Prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon Howard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and Protein Purification Details (PDF 609 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1160 kb)

Supplementary Information

Supplementary Movie 2 (MOV 511 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1160 kb)

Supplementary Information

Supplementary Movie 4 (MOV 63 kb)

Supplementary Information

Supplementary Movie 5 (MOV 633 kb)

Supplementary Information

Supplementary Movie 6 (MOV 903 kb)

Supplementary Information

Supplementary Movie 7 (MOV 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, V., Helenius, J., Tanaka, K. et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8, 957–962 (2006). https://doi.org/10.1038/ncb1462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1462

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing