Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A K+-selective cGMP-gated ion channel controls chemosensation of sperm

Abstract

Eggs attract sperm by chemical factors, a process called chemotaxis. Sperm from marine invertebrates use cGMP signalling to transduce incident chemoattractants into changes in the Ca2+ concentration in the flagellum, which control the swimming behaviour during chemotaxis1,2,3. The signalling pathway downstream of the synthesis of cGMP by a guanylyl cyclase is ill-defined. In particular, the ion channels that are involved in Ca2+ influx and their mechanisms of gating are not known4. Using rapid voltage-sensitive dyes and kinetic techniques, we record the voltage response that is evoked by the chemoattractant in sperm from the sea urchin Arbacia punctulata. We show that the chemoattractant evokes a brief hyperpolarization followed by a sustained depolarization. The hyperpolarization is caused by the opening of K+-selective cyclic-nucleotide-gated (CNG) channels in the flagellum. Ca2+ influx commences at the onset of recovery from hyperpolarization. The voltage threshold of Ca2+ entry indicates the involvement of low-voltage-activated Cav channels. These results establish a model of chemosensory transduction in sperm whereby a cGMP-induced hyperpolarization opens Cav channels by a 'recovery-from-inactivation' mechanism and unveil an evolutionary kinship between transduction mechanisms in sperm and photoreceptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resact-induced changes in membrane voltage.
Figure 2: The K+ channel is directly gated by cyclic nucleotides.
Figure 3: Mechanism of Ca2+ entry.
Figure 4: Model of chemotactic signalling events in sperm.

Similar content being viewed by others

References

  1. Kaupp, U. B. et al. The signal flow and motor response controling chemotaxis of sea urchin sperm. Nature Cell Biology 5, 109–117 (2003).

    Article  CAS  Google Scholar 

  2. Böhmer, M. et al. Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J. 24, 2741–2752 (2005).

    Article  Google Scholar 

  3. Wood, C. D., Nishigaki, T., Furuta, T., Baba, S. A. & Darszon, A. Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm. J. Cell Biol. 169, 725–731 (2005).

    Article  CAS  Google Scholar 

  4. Kaupp, U. B., Hildebrand, E. & Weyand, I. Sperm chemotaxis in marine invertebrates — molecules and mechanisms. J. Cell. Physiol. 208, 487–496 (2006).

    Article  CAS  Google Scholar 

  5. Fluhler, E., Burnham, V. G. & Loew, L. M. Spectra, membrane binding, and potentiometric reponses of new charge shift probes. Biochemistry 24, 5749–5755 (1985).

    Article  CAS  Google Scholar 

  6. Bullen, A. & Saggau, P. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes. Biophys. J. 76, 2272–2287 (1999).

    Article  CAS  Google Scholar 

  7. Grinvald, A., Anglister, L., Freeman, J. A., Hildesheim, R. & Manker, A. Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature 308, 848–850 (1984).

    Article  CAS  Google Scholar 

  8. Kauer, J. S., Senseman, D. M. & Cohen, L. B. Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res. 418, 255–261 (1987).

    Article  CAS  Google Scholar 

  9. Pugh, E. N. Jr & Lamb, T. D. Handbook of Biological Physics. (eds Stavenga, D. G., DeGrip, W. J. & Pugh, E. N. Jr) 183–255 (Elsevier Science B. V., North-Holland, 2000).

    Google Scholar 

  10. Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).

    Article  CAS  Google Scholar 

  11. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994).

    Article  CAS  Google Scholar 

  12. Darszon, A., Labarca, P., Nishigaki, T. & Espinosa, F. Ion channels in sperm physiology. Physiol. Rev. 79, 481–510 (1999).

    Article  CAS  Google Scholar 

  13. Darszon, A., Beltrán, C., Felix, R., Nishigaki, T. & Treviño, C. L. Ion transport in sperm signaling. Dev. Biol. 240, 1–14 (2001).

    Article  CAS  Google Scholar 

  14. Hille, B. Ion Channels of Excitable Membranes. (Sinauer Associates Inc., Sunderland, 2001).

    Google Scholar 

  15. Perez-Reyes, E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83, 117–161 (2003).

    Article  CAS  Google Scholar 

  16. Granados-Gonzalez, G. et al. Identification of voltage-dependent Ca2+ channels in sea urchin sperm. FEBS Lett. 579, 6667–6672 (2005).

    Article  CAS  Google Scholar 

  17. Yu, X., Duan, K.-L., Shang, C.-F., Yu, H.-G. & Zhou, Z. Calcium influx through hyperpolarization-activated cation channels (Ih-channels) contributes to activity-evoked neuronal secretion. Proc. Natl Acad. Sci. USA 101, 1051–1056 (2004).

    Article  CAS  Google Scholar 

  18. Cook, S. P. & Babcock, D. F. Activation of Ca2+ permeability by cAMP is coordinated through the pHi increase induced by speract. J. Biol. Chem. 268, 22408–22413 (1993).

    CAS  PubMed  Google Scholar 

  19. Beltrán, C., Zapata, O. & Darszon, A. Membrane potential regulates sea urchin sperm adenylylcyclase. Biochemistry 35, 7591–7598 (1996).

    Article  Google Scholar 

  20. Darszon, A. et al. Calcium channels and Ca2+ fluctuations in sperm physiology. Int. Rev. Cytol. 243, 79–172 (2005).

    Article  CAS  Google Scholar 

  21. Matsumoto, M. et al. A sperm-activating peptide controls a cGMP-signaling pathway in starfish sperm. Dev. Biol. 260, 314–324 (2003).

    Article  CAS  Google Scholar 

  22. Solzin, J. et al. Revisiting the role of H+ in chemotactic signaling of sperm. J. Gen. Physiol. 124, 115–124 (2004).

    Article  CAS  Google Scholar 

  23. Gomez, M. & Nasi, E. Activation of light-dependent K+ channels in ciliary invertebrate photoreceptors involves cGMP but not the IP3/Ca2+ cascade. Neuron 15, 607–618 (1995).

    Article  Google Scholar 

  24. Fain, G. L. & Lisman, J. E. Membrane conductances of photoreceptors. Prog. Biophys. Molec. Biol. 37, 91–147 (1981).

    Article  CAS  Google Scholar 

  25. Gauss, R., Seifert, R. & Kaupp, U. B. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393, 583–587 (1998).

    Article  CAS  Google Scholar 

  26. Hagen, V. et al. Highly efficient and ultrafast phototriggers for cAMP and cGMP by using long-wavelength UV/Vis-activation. Angew. Chem. Int. Ed. 40, 1046–1048 (2001).

    Article  CAS  Google Scholar 

  27. Hagen, V., Benndorf, K. & Kaupp, U. B. Dynamic Studies in Biology (eds Goeldner, M. & Givens, R. S.) 155–178 (Wiley-VCH, Weinheim, 2005).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, KA 545/10-4 and the Fonds der Chemischen Industrie. We thank members of the Kaupp lab for critical reading of the manuscript, and A. Eckert and H.D. Grammig for preparing the manuscript and figures. We thank M. Gomez and E. Nasi for continous supply of material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U.Benjamin Kaupp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, Supplementary Table and Information (PDF 476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strünker, T., Weyand, I., Bönigk, W. et al. A K+-selective cGMP-gated ion channel controls chemosensation of sperm. Nat Cell Biol 8, 1149–1154 (2006). https://doi.org/10.1038/ncb1473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing