Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC

Abstract

Zebrafish somitogenesis is governed by a segmentation clock that generates oscillations in expression of several Notch pathway genes, including her1, her7 and deltaC1,2,3,4,5,6. Using a combination of pharmacological inhibition and Mendelian genetics, we show that DeltaD and DeltaC, two Notch ligands, represent functionally distinct signals within the segmentation clock. Using high-resolution fluorescent in situ hybridization7, the oscillations were divided into phases based on eight distinct subcellular patterns of mRNA localization for 140,000 cells. her1, her7 and deltaC expression was examined in wild-type, deltaD−/− and deltaC−/− embryos. We identified areas within the tailbud where the clock is set up in the progenitor cells (priming), where the clock starts running (initiation), and where the clocks of neighbouring cells are entrained (synchronization). We find that the clocks of motile cells are primed by deltaD in a progenitor zone in the posterior tailbud and that deltaD is required for cells to initiate oscillations on exiting this zone. Oscillations of adjacent cells are synchronized and amplified by deltaC in the posterior presomitic mesoderm as cell movement subsides and cells maintain stable neighbour relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A segmentation-recovery assay.
Figure 2: Eight phases of oscillating gene transcription are defined by subcellular mRNA localization patterns.
Figure 3: Motile somite-precursor cells remain in the progenitor zone for varying amounts of time and do not exhibit oscillation in her1, her7 and deltaC expression until migrating into the initiation zone.
Figure 4: Oscillations are driven by deltaD and synchronized by deltaC.
Figure 5: Oscillation phase distributions are differentially altered in the two delta mutants.

Similar content being viewed by others

References

  1. Holley, S. A., Geisler, R. & Nüsslein-Volhard, C. Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity. Genes Dev. 14, 1678–1690 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang, Y.-J. et al. Notch signaling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000).

    Article  CAS  Google Scholar 

  3. Holley, S. A., Jü lich, D., Rauch, G. J., Geisler, R. & Nüsslein-Volhard, C. her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129, 1175–83 (2002).

    CAS  PubMed  Google Scholar 

  4. Oates, A. C. & Ho, R. K. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formatoin of anterior segmental boundaries in the zebrafish. Development 129, 2929–2946 (2002).

    CAS  PubMed  Google Scholar 

  5. Henry, C. A. et al. Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. Development 129, 3693–3704 (2002).

    CAS  PubMed  Google Scholar 

  6. Gajewski, M. et al. Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish. Development 130, 4269–4278 (2003).

    Article  CAS  Google Scholar 

  7. Jülich, D. et al. beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Dev. Biol. 286, 391–404 (2005).

    Article  Google Scholar 

  8. Pourquié, O. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003).

    Article  Google Scholar 

  9. Dale, J. K. et al. Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock. Nature 421, 275–278 (2003).

    Article  CAS  Google Scholar 

  10. Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406 (2003).

    Article  CAS  Google Scholar 

  11. Bessho, Y. et al. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev. 15, 2642–2647 (2001).

    Article  CAS  Google Scholar 

  12. Bessho, Y., Hirata, H., Masamizu, Y. & Kageyama, R. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev. 17, 1451–1456 (2003).

    Article  CAS  Google Scholar 

  13. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    Article  CAS  Google Scholar 

  14. Morales, A. V., Yasuda, Y. & Ish-Horowicz, D. Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to Notch signaling. Dev Cell 3, 63–74 (2002).

    Article  CAS  Google Scholar 

  15. Cole, S. E., Levorse, J. M., Tilghman, S. M. & Voght, T. F. Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis. Dev. Cell 3, 75–84 (2002).

    Article  CAS  Google Scholar 

  16. Morimoto, M., Takahashi, Y., Endo, M. & Saga, Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435, 354–359 (2005).

    Article  CAS  Google Scholar 

  17. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S. & Takeda, H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441, 719–723 (2006).

    Article  CAS  Google Scholar 

  18. van Eeden, F. J. M. et al. Mutations affecting somite formation and patterning in the zebrafish Danio rerio. Development 123, 153–164 (1996).

    CAS  PubMed  Google Scholar 

  19. van Eeden, F. J. M., Holley, S. A., Haffter, P. & Nüsslein-Volhard, C. Zebrafish segmentation and pair-rule patterning. Dev. Genet 23, 65–76 (1998).

    Article  CAS  Google Scholar 

  20. Takke, C. & Campos-Ortega, J. A. her1, a zebrafish pair-rule gene, acts downstream of notch signaling to control somite development. Development 126, 3005–3014 (1999).

    CAS  PubMed  Google Scholar 

  21. Dovey, H. F. et al. Functional gamma-secretase inhibitors reduce β-amyloid peptide levels in brain. J. Neurochem. 76, 173–181 (2001).

    Article  CAS  Google Scholar 

  22. Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. A γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3, 688–694 (2002).

    Article  CAS  Google Scholar 

  23. Jülich, D., Geisler, R., Consortium, T. S. & Holley, S. A. Integrinα5 and Delta/Notch signalling have complementary spatiotemporal requirements during zebrafish somitogenesis. Dev. Cell 8, 575–86 (2005).

    Article  Google Scholar 

  24. Koshida, S. et al. Integrinα5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. Dev. Cell 8, 587–598 (2005).

    Article  CAS  Google Scholar 

  25. Nikaido, M. et al. Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites. Nature Genet. 31, 195–9 (2002).

    Article  CAS  Google Scholar 

  26. Dornseifer, P., Takke, C. & Campos-Ortega, J. A. Overexpression of a zebrafish homologue of the Drosophila neurogenic gene Delta perturbs differentiation of primary neurons and somite development. Mech. Dev. 63, 159–171 (1997).

    Article  CAS  Google Scholar 

  27. Henry, C. A., Hall, L. A., Hille, M. B., Solnica-Krezel, L. & Cooper, M. S. Somite in zebrafish doubly mutant for knypek and trilobite form without internal mesenchymal cells or compaction. Curr. Biol. 10, 1063–1066 (2000).

    Article  CAS  Google Scholar 

  28. Kanki, J. P. & Ho, R. K. The development of the posterior body in zebrafish. Development 124, 881–893 (1997).

    CAS  PubMed  Google Scholar 

  29. Griffin, K. J. & Kimelman, D. One-Eyed Pinhead and Spadetail are essential for heart and somite formation. Nature Cell Biol. 4, 821–825 (2002).

    Article  CAS  Google Scholar 

  30. Bierkamp, C. & Campos-Ortega, J. A. A zebrafish homologue of the Drosophila neurogenic gene Notch and its pattern of transcription during early embryogenesis. Mech. Dev. 43, 87–100 (1993).

    Article  CAS  Google Scholar 

  31. Ho, R. K. & Kane, D. A. Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348, 728–730 (1990).

    Article  CAS  Google Scholar 

  32. Griffin, K. J., Amacher, S. L., Kimmel, C. B. & Kimelman, D. Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development 125, 3379–3388 (1998).

    CAS  PubMed  Google Scholar 

  33. Oates, A. C., Mueller, C. & Ho, R. K. Cooperative function of deltaC and her7 in anterior segment formation. Dev. Biol. 280, 133–149 (2005).

    Article  CAS  Google Scholar 

  34. Cooke, J. The problem of periodic patterns in embryos. Phil. Trans. R. Soc. Lond. B 295, 509–524 (1981).

    Article  CAS  Google Scholar 

  35. Szeto, D. P. & Kimelman, D. The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains. Genes Dev. 20, 1923–1932 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Truong and S. Vadasz for contributing the fluorescent in situs and mRNA injections, respectively. We thank R. Ho for providing the sptb16 fish and A. Oates for providing the her7 plasmid. We are grateful to T. Emonet, M. Garcia-Castro, T. Brend and D. Jülich for their critical comments on the manuscript. A.M. was supported by the Department of Homeland Security Scholarship and Fellowship program. This work was funded by a grant from the National Institute of Child Health and Human Development (NICHD; R01 HD045738) to S.A.H.

Author information

Authors and Affiliations

Authors

Contributions

A.M. performed all of the experiments, with help from J.S., except for the analysis of cell movement, which was performed by S.A.H. with help from J.S. and C.C. A.M. and S.A.H. conceived and designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Scott A. Holley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 and Supplementary Table S1 (PDF 112 kb)

Supplementary Information

Supplementary Movie S1 (MOV 3801 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mara, A., Schroeder, J., Chalouni, C. et al. Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nat Cell Biol 9, 523–530 (2007). https://doi.org/10.1038/ncb1578

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1578

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing