Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Positional stability of single double-strand breaks in mammalian cells

Abstract

Formation of cancerous translocations requires the illegitimate joining of chromosomes containing double-strand breaks (DSBs). It is unknown how broken chromosome ends find their translocation partners within the cell nucleus. Here, we have visualized and quantitatively analysed the dynamics of single DSBs in living mammalian cells. We demonstrate that broken ends are positionally stable and unable to roam the cell nucleus. Immobilization of broken chromosome ends requires the DNA-end binding protein Ku80, but is independent of DNA repair factors, H2AX, the MRN complex and the cohesion complex. DSBs preferentially undergo translocations with neighbouring chromosomes and loss of local positional constraint correlates with elevated genomic instability. These results support a contact-first model in which chromosome translocations predominantly form among spatially proximal DSBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An experimental system to visualize single broken DNA ends.
Figure 2: Analysis of the positional and local movement of broken DNA ends.
Figure 3: Separation of broken DNA ends in the absence of Ku80.
Figure 4: Spatial proximity of preferential translocation partners.

Similar content being viewed by others

References

  1. Kanaar, R., Hoeijmakers, J. H. & van Gent, D. C. Molecular mechanisms of DNA double strand break repair. Trends Cell Biol. 8, 483–489 (1998).

    Article  CAS  Google Scholar 

  2. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet 27, 247–254 (2001).

    Article  CAS  Google Scholar 

  3. Elliott, B. & Jasin, M. Double-strand breaks and translocations in cancer. Cell. Mol. Life Sci. 59, 373–385 (2002).

    Article  CAS  Google Scholar 

  4. Meaburn, K. J., Misteli, T. & Soutoglou, E. Spatial genome organization in the formation of chromosomal translocations. Semin. Cancer Biol. 17, 80–90 (2007).

    Article  CAS  Google Scholar 

  5. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    Article  CAS  Google Scholar 

  6. Aten, J. A. et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303, 92–95 (2004).

    Article  CAS  Google Scholar 

  7. Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 (1998).

    Article  CAS  Google Scholar 

  8. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    Article  CAS  Google Scholar 

  9. Lisby, M., Antunez de Mayolo, A., Mortensen, U. H. & Rothstein, R. Cell cycle-regulated centers of DNA double-strand break repair. Cell Cycle 2, 479–483 (2003).

    Article  CAS  Google Scholar 

  10. Lobachev, K., Vitriol, E., Stemple, J., Resnick, M. A. & Bloom, K. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr. Biol. 14, 2107–2112 (2004).

    Article  CAS  Google Scholar 

  11. Kaye, J. A. et al. DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr. Biol. 14, 2096–2106 (2004).

    Article  CAS  Google Scholar 

  12. Haber, J. E. & Leung, W. Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996).

    Article  CAS  Google Scholar 

  13. Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biol. 5, 572–577 (2003).

    Article  CAS  Google Scholar 

  14. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 14, 8096–8106 (1994).

    Article  CAS  Google Scholar 

  15. Martinez, E. D., Rayasam, G. V., Dull, A. B., Walker, D. A. & Hager, G. L. An estrogen receptor chimera senses ligands by nuclear translocation. J. Steroid Biochem. Mol. Biol. 97, 307–321 (2005).

    Article  CAS  Google Scholar 

  16. Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J. & Lukas, J. Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J. Cell Biol. 170, 201–211 (2005).

    Article  CAS  Google Scholar 

  17. Villalobos, M. J. Detection of DNA double-strand breaks and chromosome translocations using ligation-mediated PCR and inverse PCR. Methods Mol. Biol. 314, 109–121 (2006).

    Article  CAS  Google Scholar 

  18. Vazquez, J., Belmont, A. S. & Sedat, J. W. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 11, 1227–1239 (2001).

    Article  CAS  Google Scholar 

  19. Gerlich, D. et al. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751–764 (2003).

    Article  CAS  Google Scholar 

  20. Bornfleth, H., Edelmann, P., Zink, D., Cremer, T. & Cremer, C. Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys. J. 77, 2871–2886 (1999).

    Article  CAS  Google Scholar 

  21. Celeste, A. et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114, 371–383 (2003).

    Article  CAS  Google Scholar 

  22. Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370 (2003).

    Article  CAS  Google Scholar 

  23. Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell 21, 201–214 (2006).

    Article  CAS  Google Scholar 

  24. Downs, J. A. & Jackson, S. P. A means to a DNA end: the many roles of Ku. Nature Rev. Mol. Cell Biol. 5, 367–378 (2004).

    Article  CAS  Google Scholar 

  25. Bassing, C. H. & Alt, F. W. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle 3, 149–153 (2004).

    Article  CAS  Google Scholar 

  26. Wyman, C. & Kanaar, R. Chromosome organization: reaching out to embrace new models. Curr. Biol. 12, R446–R448 (2002).

    Article  CAS  Google Scholar 

  27. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003).

    Article  CAS  Google Scholar 

  28. Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4, e138 (2006).

    Article  Google Scholar 

  29. Soutoglou, E. et al. The nuclear import of TAF10 is regulated by one of its three histone fold domain-containing interaction partners. Mol. Cell Biol. 25, 4092–4104 (2005).

    Article  CAS  Google Scholar 

  30. Lee, A. C., Fernandez-Capetillo, O., Pisupati, V., Jackson, S. P. & Nussenzweig, A. Specific association of mouse MDC1/NFBD1 with NBS1 at sites of DNA-damage. Cell Cycle 4, 177–182 (2005).

    Article  CAS  Google Scholar 

  31. Difilippantonio, S. et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nature Cell Biol. 7, 675–685 (2005).

    Article  CAS  Google Scholar 

  32. Thomann, D., Dorn, J., Sorger, P. K. & Danuser, G. Automatic fluorescent tag localization II: Improvement in super-resolution by relative tracking. J. Microsc. 211, 230–248 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to: T. Karpova and M. Kruhlak for help with the microscopy; E. Martinez for providing reagents; S. Mabon for technical assistance; E. Brunet for the help with LMPCR; T. Voss, K. Meaburn and all members of the Misteli laboratory for discussions. Imaging was performed at the National Cancer Institute (NCI) Fluorescence Imaging Facility. E.S. was supported by a fellowship from the Human Frontiers Science Program (HFSP). J.D. is a fellow of the Roche Research Foundation. This research was supported in part by the Intramural Research Program of the National Institutes of Health (NIH), NCI, Center for Cancer Research and by the NIH grant GM 68956.

Author information

Authors and Affiliations

Authors

Contributions

E.S. and T.M. designed the study, E.S., J.F.D. and K.S. performed the experiments, J.M., A.N. and T.R. provided reagents and advice, and E.S. and T.M. wrote the manuscript.

Corresponding author

Correspondence to Tom Misteli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and supplementary materials (PDF 1045 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soutoglou, E., Dorn, J., Sengupta, K. et al. Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 9, 675–682 (2007). https://doi.org/10.1038/ncb1591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing