Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arginine methylation regulates the p53 response

Abstract

Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence on the p53 response. We show that the protein arginine methyltransferase (PRMT) 5, as a co-factor in a DNA damage responsive co-activator complex that interacts with p53, is responsible for methylating p53. Arginine methylation is regulated during the p53 response and affects the target gene specificity of p53. Furthermore, PRMT5 depletion triggers p53-dependent apoptosis. Thus, methylation on arginine residues is an underlying mechanism of control during the p53 response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PRMT5 binds to the p53 co-factor Strap.
Figure 2: PRMT5 and Strap interact in cells.
Figure 3: PRMT5 regulates p53 activity.
Figure 4: p53 is physiologically methylated on arginine residues.
Figure 5: p53 arginine methylation in cells.
Figure 6: PRMT5 and the p53 response.
Figure 7: PRMT5 influences the functional properties of p53.

Similar content being viewed by others

References

  1. Levine, A. J. (p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 1997).

    Article  CAS  Google Scholar 

  2. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    Article  CAS  Google Scholar 

  3. Levine, A. J., Hu, W. & Feng, Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 13, 1027–1036 (2006).

    Article  CAS  Google Scholar 

  4. Coutts, A. S. & La Thangue, N. B. The p53 response: emerging levels of co-factor complexity. Biochem. Biophys. Res. Commun. 331, 778–785 (2005).

    Article  CAS  Google Scholar 

  5. Shikama, N. et al. A novel cofactor for p300 that regulates the p53 response. Mol. Cell 4, 365–376 (1999).

    Article  CAS  Google Scholar 

  6. Coutts, A. S., Boulahbel, H., Graham, A. & La Thangue, N. B. Mdm2 targets the p53 transcription cofactor JMY for degradation. EMBO Rep. 8, 84–90 (2007).

    Article  CAS  Google Scholar 

  7. Demonacos, C., Krstic-Demonacos, M. & La Thangue, N. B. A TPR motif cofactor contributes to p300 activity in the p53 response. Mol. Cell 8, 71–84 (2001).

    Article  CAS  Google Scholar 

  8. Demonacos, C., Krstic-Demonacos, M., Smith, L., Xu, D., O'Connor, D. P., Jansson, M. & La Thangue, N. B. A new effector pathway links ATM kinase with the DNA damage response. Nature Cell Biol. 6, 968–976 (2004).

    Article  CAS  Google Scholar 

  9. Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263–272 (2005).

    Article  CAS  Google Scholar 

  10. Branscombe, T. L., Frankel, A., Lee, J. H., Cook, J. R., Yang, Z., Pestka, S. & Clarke, S. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276, 32971–32976 (2001).

    Article  CAS  Google Scholar 

  11. Chene, P. (2001). The role of tetramerization in p53 function. Oncogene 20, 2611–7.

    Article  CAS  Google Scholar 

  12. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    Article  CAS  Google Scholar 

  13. Meister, G. et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol. 11, 1990–1994 (2001).

    Article  CAS  Google Scholar 

  14. Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P. & Sif, S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell Biol. 24, 9630–9645 (2004).

    Article  CAS  Google Scholar 

  15. Rho, J. et al. PRMT5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J. Biol. Chem. 276, 11393–401 (2001).

    Article  CAS  Google Scholar 

  16. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  17. Meek, D. W. The p53 response to DNA damage. DNA Repair 3, 1049–1056 (2004).

    Article  CAS  Google Scholar 

  18. Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    Article  CAS  Google Scholar 

  19. Vousden, K. H. Apoptosis. p53 and PUMA: a deadly duo. Science 309, 1685–1686 (2005).

    Article  CAS  Google Scholar 

  20. Fortin, A. et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol. 155, 207–216 (2001).

    Article  CAS  Google Scholar 

  21. Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  Google Scholar 

  22. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    Article  CAS  Google Scholar 

  23. Nishi, K. et al. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 269, 6320–6324 (1994).

    CAS  PubMed  Google Scholar 

  24. Qian, H., Wang, T., Naumovski, L., Lopez, C. D. & Brachmann, R. K. Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites. Oncogene 21, 7901–7911 (2002).

    Article  CAS  Google Scholar 

  25. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993 (2000).

    Article  CAS  Google Scholar 

  26. Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551–3555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Davison, T. S., Yin, P., Nie, E., Kay, C. & Arrowsmith, C. H. Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene 17, 651–656 (1998).

    Article  CAS  Google Scholar 

  28. Lomax, M. E., Barnes, D. M., Hupp, T. R., Picksley, S. M. & Camplejohn, R. S. Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene 17, 643–649 (1998).

    Article  CAS  Google Scholar 

  29. Kawaguchi, T. et al. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 24, 6976–6981 (2005).

    Article  CAS  Google Scholar 

  30. Stevens, C., Smith, L. & La Thangue, N. B. Chk2 activates E2F-1 in response to DNA damage. Nature Cell Biol. 5, 401–409 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the MRC, Cancer Research UK, EU, LRF and AICR for supporting this work, and Rosemary Williams for assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.J., S.T.D., E.C. and S.S. designed, performed and analysed the experiments; M.E. and B.K. performed and interpreted the mass spectrometry; N.B.L.T. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Nicholas B. La Thangue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 782 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansson, M., Durant, S., Cho, EC. et al. Arginine methylation regulates the p53 response. Nat Cell Biol 10, 1431–1439 (2008). https://doi.org/10.1038/ncb1802

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing