Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Essential role of Pin1 in the regulation of TRF1 stability and telomere maintenance

Abstract

Telomeres are essential for maintaining cellular proliferative capacity and their loss has been implicated in ageing. A key regulator in telomere maintenance is the telomeric protein TRF1, which was also identified as Pin2 in a screen for Pin1. Pin1 is a unique prolyl isomerase that regulates protein conformation and function after phosphorylation. However, little is known about the role of Pin1 in telomere regulation or the modulation of TRF1 by upstream signals. Here we identify TRF1 as a major conserved substrate for Pin1 during telomere maintenance and ageing. Pin1 inhibition renders TRF1 resistant to protein degradation, enhances TRF1 binding to telomeres, and leads to gradual telomere loss in human cells and in mice. Pin1-deficient mice also show widespread premature ageing phenotypes within just one generation, similar to those in telomerase-deficient mice after 4–5 consecutive generations. Thus, Pin1 is an essential regulator of TRF1 stability, telomere maintenance and ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pin1 binds to the pThr149–Pro motif in TRF1 in a phosphorylation-dependent and mitosis-specific manner.
Figure 2: Pin1 inhibition using three approaches renders TRF1 resistant to degradation, and the Pin1 action depends on its ability to act on the pThr149-Pro motif in TRF1.
Figure 3: Pin1 inhibition increases binding of TRF1 on telomeres and also leads to gradual and progressive telomere shortening in human cells.
Figure 4: Pin1 regulates telomere maintenance by acting through the TRF1-dependent mechanism.
Figure 5: Pin1 knockout results in elevated TRF1 levels, induces accelerated telomere loss and leads to a wide range of premature ageing phenotypes in mice.

Similar content being viewed by others

References

  1. Blackburn, E.H. Switching and signaling at the telomere. Cell 106, 661–673. (2001).

    Article  CAS  Google Scholar 

  2. Rodier, F., Kim, S.H., Nijjar, T., Yaswen, P. & Campisi, J. Cancer and aging: the importance of telomeres in genome maintenance. Int. J. Biochem. Cell Biol. 37, 977–990 (2005).

    Article  CAS  Google Scholar 

  3. Blasco, M.A. Telomere length, stem cells and aging. Nature Chem. Biol. 3, 640–649 (2007).

    Article  CAS  Google Scholar 

  4. Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34. (1997).

    Article  CAS  Google Scholar 

  5. Lee, H.W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  CAS  Google Scholar 

  6. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    Article  CAS  Google Scholar 

  7. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein Trf1. Nature 385, 740–743 (1997).

    Article  CAS  Google Scholar 

  8. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  Google Scholar 

  9. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487. (1998).

    Article  CAS  Google Scholar 

  10. Kim, S.H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nature Genet. 23, 405–412. (1999).

    Article  CAS  Google Scholar 

  11. Zhou, X.Z. & Lu, K.P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107, 347–359 (2001).

    Article  CAS  Google Scholar 

  12. Lee, T.H., Perrem, K., Harper, J.W., Lu, K.P. & Zhou, X.Z. F-box protein Fbx4 targets Pin2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance. J. Biol. Chem. 281, 759–768 (2006).

    Article  CAS  Google Scholar 

  13. Chang, W., Dynek, J.N. & Smith, S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17, 1328–1333 (2003).

    Article  CAS  Google Scholar 

  14. Lu, K.P., Hanes, S.D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547 (1996).

    Article  CAS  Google Scholar 

  15. Shen, M., Haggblom, C., Vogt, M., Hunter, T. & Lu, K.P. Characterization and cell cycle regulation of related human telomeric proteins Pin2 and TRF1 suggest a role in mitosis. Proc. Natl Acad. Sci. USA 94, 13618–13623 (1997).

    Article  CAS  Google Scholar 

  16. Yaffe, M.B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: A potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  Google Scholar 

  17. Shen, M., Stukenberg, P.T., Kirschner, M.W. & Lu, K.P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12, 706–720 (1998).

    Article  CAS  Google Scholar 

  18. Lu, P.J., Wulf, G., Zhou, X.Z., Davies, P. & Lu, K.P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784–788 (1999).

    Article  CAS  Google Scholar 

  19. Lu, P.J., Zhou, X.Z., Shen, M. & Lu, K.P. A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  20. Liou, Y.C. et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl Acad. Sci. USA 99, 1335–1340 (2002).

    Article  CAS  Google Scholar 

  21. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  Google Scholar 

  22. Liou, Y.-C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    Article  CAS  Google Scholar 

  23. Lu, K.P. & Zhou, X.Z. The prolyl isomerase Pin1: a pivotal new twist in phosphorylation signalling and human disease. Nature Rev. Mol. Cell Biol. 8, 904–916 (2007).

    Article  CAS  Google Scholar 

  24. Ryo, A. et al. Pin1 is an E2F target gene essential for the Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell. Biol. 22, 5281–5295 (2002).

    Article  CAS  Google Scholar 

  25. Atchison, F.W., Capel, B. & Means, A.R. Pin1 regulates the timing of mammalian primordial germ cell proliferation. Development 130, 3579–3586. (2003).

    Article  CAS  Google Scholar 

  26. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440, 528–534 (2006).

    Article  CAS  Google Scholar 

  27. Kishi, S., Wulf, G., Nakamura, M. & Lu, K.P. Telomeric protein Pin2/TRF1 induces mitotic entry and apoptosis in cells containing short telomeres and is down-regulated in breast tumors. Oncogene 20, 1497–1508 (2001).

    Article  CAS  Google Scholar 

  28. Nakamura, M. et al. A specific interaction between the telomeric protein Pin2/TRF1 and the mitotic spindle. Curr. Biol. 11, 1512–1516 (2001).

    Article  CAS  Google Scholar 

  29. Zhou, X.Z., Perrem, K. & Lu, K.P. Role of Pin2/TRF1 in telomere maintenance and cell cycle control. J. Cell. Biochem. 89, 19–37 (2003).

    Article  CAS  Google Scholar 

  30. Lim, J. et al. Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J. Clin. Invest. 118, 1877–1889 (2008).

    Article  CAS  Google Scholar 

  31. Cristofari, G. & Lingner, J. Telomere length homeostasis requires that telomerase levels are limiting. EMBO J. 25, 565–574 (2006).

    Article  CAS  Google Scholar 

  32. Milyavsky, M. et al. Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype. Cancer Res. 63, 7147–7157 (2003).

    CAS  PubMed  Google Scholar 

  33. Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995).

    Article  CAS  Google Scholar 

  34. Pinton, P. et al. Protein kinase C β and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315, 659–663 (2007).

    Article  CAS  Google Scholar 

  35. Sultana, R. et al. Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis. Neurobiol. Aging 27, 918–925 (2006).

    Article  CAS  Google Scholar 

  36. Panossian, L.A. et al. Telomere shortening in T cells correlates with Alzheimer's disease status. Neurobiol. Aging 24, 77–84 (2003).

    Article  CAS  Google Scholar 

  37. Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    Article  CAS  Google Scholar 

  38. Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E. & Lansdorp, P.M. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nature Biotechnol. 16, 743–747. (1998).

    Article  CAS  Google Scholar 

  39. Chiang, Y.J. et al. Expression of telomerase RNA template, but not telomerase reverse transcriptase, is limiting for telomere length maintenance in vivo. Mol. Cell Biol. 24, 7024–7031 (2004).

    Article  CAS  Google Scholar 

  40. Hemann, M.T. & Greider, C.W. G-strand overhangs on telomeres in telomerase-deficient mouse cells. Nucleic Acids Res. 27, 3964–3969 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Frangioni and R. Bronson for assistance in determining bone-related and ageing phenotypes in Pin1 knockout mice, and W. Hahn for TERT and TER expression vectors. J. L. is a Human Frontiers Science Program Fellow, C.Y.S. is a Predoctoral Fellow of the DOD Breast Cancer Research Program and L. P. is a recipient of a Mentored Research Scientist Development Award from the NIH (K01). The work was supported by NIH grants to X. Z. Z. (R01CA122434) and K.P.L. (R01GM058556 and AG017870).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Zhen Zhou or Kun Ping Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1687 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T., Tun-Kyi, A., Shi, R. et al. Essential role of Pin1 in the regulation of TRF1 stability and telomere maintenance. Nat Cell Biol 11, 97–105 (2009). https://doi.org/10.1038/ncb1818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing