Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Live-imaging of single stem cells within their niche reveals that a U3snoRNP component segregates asymmetrically and is required for self-renewal in Drosophila

Abstract

Stem cells generate self-renewing and differentiating progeny over many rounds of asymmetric divisions. How stem cell growth rate and size are maintained over time remains unknown. We isolated mutations in a Drosophila melanogaster gene, wicked (wcd), which induce premature differentiation of germline stem cells (GSCs). Wcd is a member of the U3 snoRNP complex required for pre-ribosomal RNA maturation. This general function of Wcd contrasts with its specific requirement for GSC self-renewal. However, live imaging of GSCs within their niche revealed a pool of Wcd-forming particles that segregate asymmetrically into the GSCs on mitosis, independently of the Dpp signal sent by the niche. A fraction of Wcd also segregated asymmetrically in dividing larval neural stem cells (NSCs). In the absence of Wcd, NSCs became smaller and produced fewer neurons. Our results show that regulation of ribosome synthesis is a crucial parameter for stem cell maintenance and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wcd is required for GSC self-renewal.
Figure 2: Wcd encodes a nucleolar protein containing four WD40 motifs.
Figure 3: Wcd is a functional component of the U3 snoRNP required for pre-rRNA maturation.
Figure 4: Wcd is asymmetrically segregated upon GSC mitosis.
Figure 5: Asymmetric segregation of Wcd is independent of the Dpp signal.
Figure 6: Wcd is asymmetrically segregated upon neuroblast division in the larval central nervous system and is required for neural stem cell proliferation and growth.

Similar content being viewed by others

References

  1. Birnbaum, K. D. & Sanchez Alvarado, A. Slicing across kingdoms: regeneration in plants and animals. Cell 132, 697–710 (2008).

    Article  CAS  Google Scholar 

  2. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  Google Scholar 

  3. Gilboa, L. & Lehmann, R. How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila females and males. Development 131, 4895–4905 (2004).

    Article  CAS  Google Scholar 

  4. Wong, M. D., Jin, Z. & Xie, T. Molecular mechanisms of germline stem cell regulation. Annu. Rev. Genet. 39, 173–195 (2005).

    Article  CAS  Google Scholar 

  5. Song, X. & Xie, T. DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc. Natl Acad. Sci. USA 99, 14813–14818 (2002).

    Article  CAS  Google Scholar 

  6. Xie, T. & Spradling, A. C. Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998).

    Article  CAS  Google Scholar 

  7. Fichelson, P. & Huynh, J. R. Asymmetric divisions of germline cells. Prog. Mol. Subcell. Biol. 45, 97–120 (2007).

    Article  CAS  Google Scholar 

  8. Deng, W. & Lin, H. Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev. Biol. 189, 79–94 (1997).

    Article  CAS  Google Scholar 

  9. Xie, T. & A, S. A niche maintaining germline stem cells in the Drosophila ovary. Science 290, 328–330 (2000).

    Article  CAS  Google Scholar 

  10. de Cuevas, M., Lilly, M. A. & Spradling, A. C. Germline cyst formation in Drosophila. Annu. Rev. Genet. 31, 405–428 (1997).

    Article  CAS  Google Scholar 

  11. Huynh, J. R. & St Johnston, D. The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr. Biol. 14, R438–449 (2004).

    Article  CAS  Google Scholar 

  12. de Cuevas, M. & Spradling, A. C. Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125, 2781–2789 (1998).

    CAS  PubMed  Google Scholar 

  13. Huynh, J. R. Fusome as a cell–cell communication channel of Drosophila ovarian cyst (Landes Biosciences, 2006).

  14. Neumuller, R. A. et al. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature (2008).

    Google Scholar 

  15. Rudra, D. & Warner, J. R. What better measure than ribosome synthesis? Genes Dev. 18, 2431–2436 (2004).

    Article  CAS  Google Scholar 

  16. Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R. & Pagano, M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450, 309–313 (2007).

    Article  CAS  Google Scholar 

  17. Maaloe, O. & Kjedgaard, N. Control of macromolecular synthesis, (W. A. Benjamin, New York, 1966).

    Google Scholar 

  18. Boisvert, F. M., van Koningsbruggen, S., Navascues, J. & Lamond, A. I. The multifunctional nucleolus. Nature Rev. Mol. Cell Biol. 8, 574–585 (2007).

    Article  CAS  Google Scholar 

  19. Matera, A. G., Terns, R. M. & Terns, M. P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Rev. Mol. Cell Biol. 8, 209–220 (2007).

    Article  CAS  Google Scholar 

  20. Xu, T. & Rubin, G. Analysis of genetic mosaics in developing an adult Drosphila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  21. Scherl, A. et al. Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13, 4100–4109 (2002).

    Article  CAS  Google Scholar 

  22. Dragon, F. et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967–970 (2002).

    Article  CAS  Google Scholar 

  23. Godfrey, A. C. et al. U7 snRNA mutations in Drosophila block histone pre-mRNA processing and disrupt oogenesis. RNA 12, 396–409 (2006).

    Article  CAS  Google Scholar 

  24. Lanzotti, D. J. et al. Drosophila stem-loop binding protein intracellular localization is mediated by phosphorylation and is required for cell cycle-regulated histone mRNA expression. Mol. Biol. Cell 15, 1112–1123 (2004).

    Article  CAS  Google Scholar 

  25. Liu, J. L. et al. The Drosophila melanogaster Cajal body. J. Cell Biol. 172, 875–884 (2006).

    Article  CAS  Google Scholar 

  26. Long, E. O. & Dawid, I. B. Alternative pathways in the processing of ribosomal RNA precursor in Drosophila melanogaster. J. Mol. Biol. 138, 873–878 (1980).

    Article  CAS  Google Scholar 

  27. Giordano, E., Peluso, I., Senger, S. & Furia, M. minifly, a Drosophila gene required for ribosome biogenesis. J. Cell Biol. 144, 1123–1133 (1999).

    Article  CAS  Google Scholar 

  28. Chen, D. & McKearin, D. Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr. Biol. 13, 1786–1791 (2003).

    Article  CAS  Google Scholar 

  29. Casanueva, M. O. & Ferguson, E. L. Germline stem cell number in the Drosophila ovary is regulated by redundant mechanisms that control Dpp signaling. Development 131, 1881–1890 (2004).

    Article  CAS  Google Scholar 

  30. Song, X. et al. Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 131, 1353–1364 (2004).

    Article  CAS  Google Scholar 

  31. Bolivar, J., Pearson, J., Lopez-Onieva, L. & Gonzalez-Reyes, A. Genetic dissection of a stem cell niche: the case of the Drosophila ovary. Dev. Dyn. 235, 2969–2979 (2006).

    Article  CAS  Google Scholar 

  32. Kai, T., Williams, D. & Spradling, A. C. The expression profile of purified Drosophila germline stem cells. Dev. Biol. (2005).

  33. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–685 (2004).

    Article  CAS  Google Scholar 

  34. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  35. Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133, 891–902 (2008).

    Article  CAS  Google Scholar 

  36. Clem, R. J., Fechheimer, M. & Miller, L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254, 1388–1390 (1991).

    Article  CAS  Google Scholar 

  37. Al-Hajj, M. & Clarke, M. F. Self-renewal and solid tumor stem cells. Oncogene 23, 7274–7282 (2004).

    Article  CAS  Google Scholar 

  38. Bowman, S. K. et al. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell 14, 535–546 (2008).

    Article  CAS  Google Scholar 

  39. Bello, B., Reichert, H. & Hirth, F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133, 2639–2648 (2006).

    Article  CAS  Google Scholar 

  40. Betschinger, J., Mechtler, K. & Knoblich, J. A. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124, 1241–1253 (2006).

    Article  CAS  Google Scholar 

  41. Lee, C. Y., Wilkinson, B. D., Siegrist, S. E., Wharton, R. P. & Doe, C. Q. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev. Cell 10, 441–449 (2006).

    Article  CAS  Google Scholar 

  42. Frank, D. J., Edgar, B. A. & Roth, M. B. The Drosophila melanogaster gene brain tumor negatively regulates cell growth and ribosomal RNA synthesis. Development 129, 399–407 (2002).

    CAS  PubMed  Google Scholar 

  43. Page, S. L., McKim, K. S., Deneen, B., Van Hook, T. L. & Hawley, R. S. Genetic studies of mei-P26 reveal a link between the processes that control germ cell proliferation in both sexes and those that control meiotic exchange in Drosophila. Genetics 155, 1757–1772 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Komili, S., Farny, N. G., Roth, F. P. & Silver, P. A. Functional specificity among ribosomal proteins regulates gene expression. Cell 131, 557–571 (2007).

    Article  CAS  Google Scholar 

  45. Knoblich, J., Jan, L. & Jan, Y. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624–627 (1995).

    Article  CAS  Google Scholar 

  46. Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 453, 345–351 (2008).

    Article  CAS  Google Scholar 

  47. Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biol. 3, 50–57 (2001).

    Article  CAS  Google Scholar 

  48. Gho, M., Bellaiche, Y. & Schweisguth, F. Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 126, 3573–3584 (1999).

    CAS  Google Scholar 

  49. Worby, C. A., Simonson-Leff, N. & Dixon, J. E. RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci. STKE2001, PL1 (2001).

  50. Hong, A., Lee-Kong, S., Iida, T., Sugimura, I. & Lilly, M. A. The p27cip/kip ortholog dacapo maintains the Drosophila oocyte in prophase of meiosis I. Development 130, 1235–1242 (2003).

    Article  CAS  Google Scholar 

  51. Zhu, S. et al. Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 127, 409–422 (2006).

    Article  CAS  Google Scholar 

  52. Ikeshima-Kataoka, H., Skeath, J. B., Nabeshima, Y.-i., Doe, C. Q. & Matsuzaki, F. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390, 625–629 (1998).

    Article  Google Scholar 

  53. González-Reyes, A., Elliott, H. & St Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We are especially grateful to Danièle Hernandez-Verdun, Bruno Bello, Frank Hirth, Andrew Vaughan and the Imaging facilities at IJM for experimental advice; to Danièle Hernandez-Verdun, Acaimo Gonzalez-Reyes, Antoine Guichet, Juliette Mathieu, Emily Richardson and Ralph Neumuller for critical reading. We are also grateful for reagents provided by Danièle Hernandez-Verdun, Joe Gall, Acaimo Gonzalez-Reyes, Fumio Matsuzaki, Christophe Antoniewski, Antoine Guichet, Christian Lehner, Alex Gould, Tzumin Lee, Barry Thompson, DHSB (Iowa University) and Bloomington Drosophila Stock center. We wish to thank Franck Pichaud (MRC-LMCB, UCL) in whose lab part of this work was performed. This work was funded by grants to J.R.H. (CNRS, ARC # 3802, and ANR # 06-JCJC-0092-01), P.F. (ARC post-doctoral fellowhip and EMBO long term fellowship), CM (CNRS), J.A.L. (CNRS, ARC# 3802) Ch.M. and Y.B. (CNRS, Curie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-René Huynh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1684 kb)

Supplementary Information

Supplementary Movie 1 (AVI 10655 kb)

Supplementary Information

Supplementary Movie 2 (MOV 9381 kb)

Supplementary Information

Supplementary Movie 3 (AVI 10244 kb)

Supplementary Information

Supplementary Movie 4 (AVI 3223 kb)

Supplementary Information

Supplementary Movie 5 (AVI 2055 kb)

Supplementary Information

Supplementary Movie 6 (AVI 8579 kb)

Supplementary Information

Supplementary Movie 7 (AVI 5789 kb)

Supplementary Information

Supplementary Movie 8 (AVI 6369 kb)

Supplementary Information

Supplementary Movie 9 (AVI 17582 kb)

Supplementary Information

Supplementary Movie 10 (MOV 4591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fichelson, P., Moch, C., Ivanovitch, K. et al. Live-imaging of single stem cells within their niche reveals that a U3snoRNP component segregates asymmetrically and is required for self-renewal in Drosophila. Nat Cell Biol 11, 685–693 (2009). https://doi.org/10.1038/ncb1874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing