Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mitotic kinesin-14 Ncd drives directional microtubule–microtubule sliding

Abstract

During mitosis and meiosis, the bipolar spindle facilitates chromosome segregation through microtubule sliding as well as microtubule growth and shrinkage1. Kinesin-14, one of the motors involved, causes spindle collapse in the absence of kinesin-5 (Refs 2, 3), participates in spindle assembly4 and modulates spindle length5. However, the molecular mechanisms underlying these activities are not known. Here, we report that Drosophila melanogaster kinesin-14 (Ncd) alone causes sliding of anti-parallel microtubules but locks together (that is, statically crosslinks) those that are parallel. Using single molecule imaging we show that Ncd diffuses along microtubules in a tail-dependent manner and switches its orientation between sliding microtubules. Our results show that kinesin-14 causes sliding and expansion of an anti-parallel microtubule array by dynamic interactions through the motor domain on the one side and the tail domain on the other. This mechanism accounts for the roles of kinesin-14 in spindle organization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ncd interaction with microtubules in the presence of ATP.
Figure 2: Ncd induces directional microtubule–microtubule sliding and static crosslinking.
Figure 3: Transport and switching of Ncd during sliding.
Figure 4: Accumulation of Ncd at the minus ends of parallel microtubule-bundles.
Figure 5: Model for directional sliding and static crosslinking of microtubules by Ncd.

Similar content being viewed by others

References

  1. Gadde, S. & Heald, R. Mechanisms and molecules of the mitotic spindle. Curr. Biol. 14, 797–805 (2004).

    Article  Google Scholar 

  2. Sharp, D. J., Yu, K. R., Sisson, J. C., Sullivan, W. & Scholey, J. M. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nature Cell Biol. 1, 51–54 (1999).

    Article  CAS  Google Scholar 

  3. Hoyt, M. A., He, L., Loo, K. K. & Saunders, W. S. Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol. 118, 109–120 (1992).

    Article  CAS  Google Scholar 

  4. Walczak, C. E., Verma, S. & Mitchison, T. J. XCTK2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J. Cell Biol. 136, 859–870 (1997).

    Article  CAS  Google Scholar 

  5. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241–253 (2000).

    Article  CAS  Google Scholar 

  6. Hildebrandt, E. R. & Hoyt, M. A. Mitotic motors in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1496, 99–116 (2000).

    Article  CAS  Google Scholar 

  7. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Microtubule motors in mitosis. Nature 407, 41–47 (2000).

    Article  CAS  Google Scholar 

  8. Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A. & Endow, S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem. 268, 9005–9013 (1993).

    CAS  PubMed  Google Scholar 

  9. McDonald, H. B. & Goldstein, L. S. Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61, 991–1000 (1990).

    Article  CAS  Google Scholar 

  10. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159–1165 (1990).

    Article  CAS  Google Scholar 

  11. Karabay, A. & Walker, R. A. Identification of microtubule binding sites in the Ncd tail domain. Biochemistry 38, 1838–1849 (1999).

    Article  CAS  Google Scholar 

  12. Matthies, H. J., McDonald, H. B., Goldstein, L. S. & Theurkauf, W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol. 134, 455–464 (1996).

    Article  CAS  Google Scholar 

  13. Kimble, M. & Church, K. Meiosis and early cleavage in Drosophila melanogaster eggs: effects of the claret-non-disjunctional mutation. J. Cell Sci. 62, 301–318 (1983).

    CAS  PubMed  Google Scholar 

  14. Segbert, C. et al. KLP-18, a Klp2 kinesin, is required for assembly of acentrosomal meiotic spindles in Caenorhabditis elegans. Mol. Biol. Cell 14, 4458–4469 (2003).

    Article  CAS  Google Scholar 

  15. Hatsumi, M. & Endow, S. A. Mutants of the microtubule motor protein, nonclaret disjunctional, affect spindle structure and chromosome movement in meiosis and mitosis. J. Cell Sci. 101, 547–559 (1992).

    PubMed  Google Scholar 

  16. Saunders, W. S. & Hoyt, M. A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70, 451–458 (1992).

    Article  CAS  Google Scholar 

  17. Mountain, V. et al. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J. Cell Biol. 147, 351–366 (1999).

    Article  CAS  Google Scholar 

  18. Goshima, G., Nedelec, F. & Vale, R. D. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. [see comment]. J. Cell Biol. 171, 229–240 (2005).

    Article  CAS  Google Scholar 

  19. Endow, S. A., Chandra, R., Komma, D. J., Yamamoto, A. H. & Salmon, E. D. Mutants of the Drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis. J. Cell Sci. 107, 859–867 (1994).

    CAS  PubMed  Google Scholar 

  20. Troxell, C. L. et al. pkl1+ and klp2+: Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol. Biol. Cell 12, 3476–3488 (2001).

    Article  CAS  Google Scholar 

  21. Brust-Mascher, I. & Scholey, J. M. Microtubule flux and sliding in mitotic spindles of Drosophila embryos. Mol. Biol. Cell 13, 3967–3975 (2002).

    Article  CAS  Google Scholar 

  22. Kapitein, L. C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435, 114–118 (2005).

    Article  CAS  Google Scholar 

  23. Hoyt, M. A., He, L., Totis, L. & Saunders, W. S. Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135, 35–44 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Oladipo, A., Cowan, A. & Rodionov, V. Microtubule motor Ncd induces sliding of microtubules in vivo. Mol. Biol. Cell 18, 3601–3606 (2007).

    Article  CAS  Google Scholar 

  25. Foster, K. A. & Gilbert, S. P. Kinetic studies of dimeric Ncd: evidence that Ncd is not processive. Biochemistry 39, 1784–1791 (2000).

    Article  CAS  Google Scholar 

  26. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 (1997).

    Article  CAS  Google Scholar 

  27. Furuta, K. & Toyoshima, Y. Y. Minus-end-directed motor Ncd exhibits processive movement that is enhanced by microtubule bundling in vitro. Curr. Biol. 18, 152–157 (2008).

    Article  CAS  Google Scholar 

  28. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).

    Article  CAS  Google Scholar 

  29. Kapitein, L. C. et al. Microtubule cross-linking triggers the directional motility of kinesin-5. J. Cell Biol. 182, 421–428 (2008).

    Article  CAS  Google Scholar 

  30. van den Wildenberg, S. M. et al. The homotetrameric kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations. Curr. Biol. 18, 1860–1864 (2008).

    Article  CAS  Google Scholar 

  31. Cheerambathur, D. K., Brust-Mascher, I., Civelekoglu-Scholey, G. & Scholey, J. M. Dynamic partitioning of mitotic kinesin-5 cross-linkers between microtubule-bound and freely diffusing states. J. Cell Biol. 182, 429–436 (2008).

    Article  CAS  Google Scholar 

  32. Uteng, M., Hentrich, C., Miura, K., Bieling, P. & Surrey, T. Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles. J. Cell Biol. 182, 715–726 (2008).

    Article  CAS  Google Scholar 

  33. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006).

    Article  CAS  Google Scholar 

  34. Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J. Cell Sci. Suppl. 14, 125–127 (1991).

    Article  CAS  Google Scholar 

  35. Rogers, K. R. et al. KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry. EMBO J. 20, 5101–5113 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the members of the Kasprzak and the Diez labs for comments on the manuscript as well as C. Bräuer and D. Naumburger for technical support. We thank C. Leduc, B. Nitzsche, C. Gell and J. Howard for fruitful discussion, F. Ruhnow for help with the microtubule tracking, as well as S. Bajer and E. Kocik for help with FPLC experiments. This work was supported by the German Federal Ministry of Education and Research (Grant 03 N 8712), the Polish Network for Mechanisms of Cell Motility, the Grant 2 P04C 131 29 and the Max-Planck-Society. G. Fink was supported by a fellowship from the Boehringer Ingelheim Foundation

Author information

Authors and Affiliations

Authors

Contributions

G.F., L.H., C.R., A.A.K. and S.D. designed the experiments; L.H. and C.R. performed initial experiments; G.F. performed the presented experiments and analysed the data; L.H. and K.J.S. generated the Ncd proteins; G.F and S.D. wrote the manuscript; A.A.K. and S.D. initiated the research and supervised the work. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Stefan Diez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2159 kb)

Supplementary Information

Supplementary Movie 1 (MOV 7735 kb)

Supplementary Information

Supplementary Movie 2 (MOV 4993 kb)

Supplementary Information

Supplementary Movie 3 (MOV 6320 kb)

Supplementary Information

Supplementary Movie 4 (MOV 13401 kb)

Supplementary Information

Supplementary Movie 5 (MOV 5906 kb)

Supplementary Information

Supplementary Movie 6 (MOV 4037 kb)

Supplementary Information

Supplementary Movie 7 (MOV 7918 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, G., Hajdo, L., Skowronek, K. et al. The mitotic kinesin-14 Ncd drives directional microtubule–microtubule sliding. Nat Cell Biol 11, 717–723 (2009). https://doi.org/10.1038/ncb1877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing