Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs

Abstract

Vault particles are conserved organelles implicated in multidrug resistance and intracellular transport. They contain three different proteins and non-coding vault RNAs (vRNAs). Here we show that human vRNAs produce several small RNAs (svRNAs) by mechanisms different from those in the canonical microRNA (miRNA) pathway. At least one of these svRNAs, svRNAb, associates with Argonaute proteins to guide sequence-specific cleavage and regulate gene expression similarly to miRNAs. We demonstrate that svRNAb downregulates CYP3A4, a key enzyme in drug metabolism. Our findings expand the repertoire of small regulatory RNAs and assign, for the first time, a function to vRNAs that may help explain the association between vault particles and drug resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: svRNAs are processed by Dicer independently of Drosha.
Figure 2: svRNAb guides miRNA-like regulation of gene expression.

Similar content being viewed by others

Accession codes

Accessions

EMBL/GenBank/DDBJ

Gene Expression Omnibus

References

  1. Kedersha, N. L. & Rome, L. H. J. Cell Biol. 103, 699–709 (1986).

    Article  CAS  Google Scholar 

  2. Kedersha, N. L., Miquel, M. C., Bittner, D. & Rome, L. H. J. Cell Biol. 110, 895–901 (1990).

    Article  CAS  Google Scholar 

  3. Mossink, M. H., van Zon, A., Scheper, R. J., Sonneveld, P. & Wiemer, E. A. Oncogene 22, 7458–7467 (2003).

    Article  CAS  Google Scholar 

  4. van Zon, A. et al. J. Biol. Chem. 276, 37715–37721 (2001).

    Article  CAS  Google Scholar 

  5. Kong, L. B., Siva, A. C., Kickhoefer, V. A., Rome, L. H. & Stewart, P. L. RNA 6, 890–900 (2000).

    Article  CAS  Google Scholar 

  6. Hamada, M., Sakulich, A. L., Koduru, S. B. & Maraia, R. J. J. Biol. Chem. 275, 29076–29081 (2000).

    Article  CAS  Google Scholar 

  7. Izquierdo, M. A. et al. Am. J. Pathol. 148, 877–887 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Duncan, D. D., Eshoo, M., Esau, C., Freier, S. M. & Lollo, B. A. Anal. Biochem. 359, 268–270 (2006).

    Article  CAS  Google Scholar 

  9. Grimson, A. et al. Mol. Cell 27, 91–105 (2007).

    Article  CAS  Google Scholar 

  10. Subramanian, A. et al. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  11. Guengerich, F. P. Mol. Interv. 3, 194–204 (2003).

    Article  CAS  Google Scholar 

  12. Kickhoefer, V. A. et al. J. Biol. Chem. 273, 8971–8974 (1998).

    Article  CAS  Google Scholar 

  13. Ender, C. et al. Mol. Cell 32, 519–528 (2008).

    Article  CAS  Google Scholar 

  14. Elbashir, S. M., Lendeckel, W. & Tuschl, T. Genes Dev. 15, 188–200 (2001).

    Article  CAS  Google Scholar 

  15. Siepel, A. et al. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  Google Scholar 

  16. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F. & Hellens, R. P. Plant Methods 3, 12 (2007).

    Article  Google Scholar 

  17. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  18. Azuma-Mukai, A. et al. Proc. Natl Acad. Sci. USA 105, 7964–7969 (2008).

    Article  CAS  Google Scholar 

  19. Saal, L. H. et al. Genome Biol. 3, software0003.1–software0003.6 (2002).

  20. Yang, I. V. et al. Genome Biol. 3, research0062.1–research0062.12 (2002).

Download references

Acknowledgements

This work was supported by grants from The Royal Physiographic Society in Lund, the Berta Kamprad Foundation, the Lund Center for Stem Cell Biology and Cell Therapy, and the Swedish Cancer Society. We thank M. Siomi and H. Siomi for the gift of the Ago antibodies, and A. Brun and C. Welinder for technical advice. HP was supported by the Swedish Knowledge Foundation through the Industrial PhD program in Medical Bioinformatics at the Strategy and Development Office at the Karolinska Institute.

Author information

Authors and Affiliations

Authors

Contributions

H.P. carried out experimental work and participated in the design of the study. H.P. and A.K. performed the bioinformatic analyses. J.V.C. analysed the microarray data. P.M. contributed to the bioinformatic analyses. Å.B. participated in the design of the study. C.R. contributed to the experimental work, and conceived, designed and coordinated the study. H.P., A.K. and C.R. wrote the manuscript.

Corresponding author

Correspondence to Carlos Rovira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 817 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, H., Kvist, A., Vallon-Christersson, J. et al. The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat Cell Biol 11, 1268–1271 (2009). https://doi.org/10.1038/ncb1972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing