Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of Dpp morphogen signalling by a secreted feedback regulator

Abstract

In many instances during development, morphogens specify cell fates by forming concentration gradients. In the Drosophila melanogaster wing imaginal disc, Decapentaplegic (Dpp), a bone morphogenetic protein (BMP), functions as a long-range morphogen to control patterning and growth1. Dpp is secreted from a stripe of cells at the anterior-posterior compartment boundary and spreads into both compartments to generate a characteristic BMP activity gradient2,3,4,5,6. Ever since the identification of the morphogen activity of Dpp in the developing wing, the system has served as a paradigm to understand how long-range gradients are established and how cells respond to such gradients. Here we reveal the tight and direct connection of these two processes with the identification and characterization of pentagone (pent), a transcriptional target of BMP signalling encoding a secreted regulator of the pathway. Absence of pent in the wing disc causes a severe contraction of the BMP activity gradient resulting in patterning and growth defects. We show that Pent interacts with the glypican Dally to control Dpp distribution and provide evidence that proper establishment of the BMP morphogen gradient requires the inbuilt feedback loop embodied by Pent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pent is a transcriptional target of BMP signalling.
Figure 2: Pent is required for growth and patterning of the wing.
Figure 3: Pent shapes the Dpp morphogen gradient.
Figure 4: Pent interacts with glypicans.
Figure 5: Pent functions as a regulatory feedback loop controlling morphogen gradient formation and organ shape.

Similar content being viewed by others

References

  1. Affolter, M. & Basler, K. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat. Rev. Genet. 8, 663–674 (2007).

    Article  CAS  Google Scholar 

  2. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    Article  CAS  Google Scholar 

  3. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000).

    Article  CAS  Google Scholar 

  4. Khalsa, O., Yoon, J. W., Torres-Schumann, S. & Wharton, K. A. TGF-β/BMP superfamily members, Gbb-60A and Dpp, cooperate to provide pattern information and establish cell identity in the Drosophila wing. Development 125, 2723–2734 (1998).

    CAS  PubMed  Google Scholar 

  5. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996).

    Article  CAS  Google Scholar 

  6. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  Google Scholar 

  7. Pyrowolakis, G., Hartmann, B., Muller, B., Basler, K. & Affolter, M. A simple molecular complex mediates widespread BMP-induced repression during Drosophila development. Dev. Cell. 7, 229–240 (2004).

    Article  CAS  Google Scholar 

  8. Wu, M. Y. & Hill, C. S. TGF-β superfamily signaling in embryonic development and homeostasis. Dev. Cell. 16, 329–343 (2009).

    Article  CAS  Google Scholar 

  9. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  Google Scholar 

  10. Gao, S., Steffen, J. & Laughon, A. Dpp-responsive silencers are bound by a trimeric Mad-Medea complex. J. Biol. Chem. 280, 36158–36164 (2005).

    Article  CAS  Google Scholar 

  11. Campbell, G. & Tomlinson, A. Transducing the Dpp morphogen gradient in the wing of Drosophila: regulation of Dpp targets by brinker. Cell 96, 553–562 (1999).

    Article  CAS  Google Scholar 

  12. Jazwinska, A., Kirov, N., Wieschaus, E., Roth, S. & Rushlow, C. The Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation. Cell 96, 563–573 (1999).

    Article  CAS  Google Scholar 

  13. Muller, B., Hartmann, B., Pyrowolakis, G., Affolter, M. & Basler, K. Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient. Cell 113, 221–233 (2003).

    Article  CAS  Google Scholar 

  14. Minami, M., Kinoshita, N., Kamoshida, Y., Tanimoto, H. & Tabata, T. brinker is a target of Dpp in Drosophila that negatively regulates Dpp-dependent genes. Nature 398, 242–246 (1999).

    Article  CAS  Google Scholar 

  15. Blair, S. S. Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu. Rev. Cell Dev. Biol. 23, 293–319 (2007).

    Article  CAS  Google Scholar 

  16. Tanimoto, H., Itoh, S., ten Dijke, P. & Tabata, T. Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59–71 (2000).

    Article  CAS  Google Scholar 

  17. Weiss, A. et al. A conserved activation element in BMP signaling during Drosophila development. Nat. Struct. Mol. Biol. 17, 69–76 (2010).

    Article  CAS  Google Scholar 

  18. Tsuneizumi, K. et al. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389, 627–631 (1997).

    Article  CAS  Google Scholar 

  19. Strigini, M. & Cohen, S. M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    Article  CAS  Google Scholar 

  20. Akiyama, T. et al. Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Dev. Biol. 313, 408–419 (2008).

    Article  CAS  Google Scholar 

  21. Belenkaya, T. Y. et al. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulphate proteoglycans. Cell 119, 231–244 (2004).

    Article  CAS  Google Scholar 

  22. Miaczynska, M., Pelkmans, L. & Zerial, M. Not just a sink: endosomes in control of signal transduction. Curr. Opin. Cell Biol. 16, 400–406 (2004).

    Article  CAS  Google Scholar 

  23. Lecuit, T. & Cohen, S. M. Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125, 4901–4907 (1998).

    CAS  PubMed  Google Scholar 

  24. Lin, X. Functions of heparan sulphate proteoglycans in cell signaling during development. Development 131, 6009–6021 (2004).

    Article  CAS  Google Scholar 

  25. Kirkpatrick, C. A. & Selleck, S. B. Heparan sulphate proteoglycans at a glance. J. Cell Sci. 120, 1829–1832 (2007).

    Article  CAS  Google Scholar 

  26. Bornemann, D. J., Duncan, J. E., Staatz, W., Selleck, S. & Warrior, R. Abrogation of heparan sulphate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131, 1927–1938 (2004).

    Article  CAS  Google Scholar 

  27. Fujise, M. et al. Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 130, 1515–1522 (2003).

    Article  CAS  Google Scholar 

  28. Hileman, R. E., Fromm, J. R., Weiler, J. M. & Linhardt, R. J. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20, 156–167 (1998).

    Article  CAS  Google Scholar 

  29. Groppe, J. et al. Biochemical and biophysical characterization of refolded Drosophila DPP, a homolog of bone morphogenetic proteins 2 and 4. J. Biol. Chem. 273, 29052–29065 (1998).

    Article  CAS  Google Scholar 

  30. Ohkawara, B., Iemura, S., ten Dijke, P. & Ueno, N. Action range of BMP is defined by its N-terminal basic amino acid core. Curr. Biol. 12, 205–209 (2002).

    Article  CAS  Google Scholar 

  31. Crickmore, M. A. & Mann, R. S. Hox control of morphogen mobility and organ development through regulation of glypican expression. Development 134, 327–334 (2007).

    Article  CAS  Google Scholar 

  32. Glise, B. et al. Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of Hedgehog. Dev. Cell. 8, 255–266 (2005).

    Article  CAS  Google Scholar 

  33. Gorfinkiel, N., Sierra, J., Callejo, A., Ibanez, C. & Guerrero, I. The Drosophila ortholog of the human Wnt inhibitor factor Shifted controls the diffusion of lipid-modified Hedgehog. Dev. Cell. 8, 241–253 (2005).

    Article  CAS  Google Scholar 

  34. Kornberg, T. B. & Guha, A. Understanding morphogen gradients: a problem of dispersion and containment. Curr. Opin. Genet. Dev. 17, 264–271 (2007).

    Article  CAS  Google Scholar 

  35. Entchev, E. V. & Gonzalez-Gaitan, M. A. Morphogen gradient formation and vesicular trafficking. Traffic 3, 98–109 (2002).

    Article  CAS  Google Scholar 

  36. Perrimon, N. & McMahon, A. P. Negative feedback mechanisms and their roles during pattern formation. Cell 97, 13–16 (1999).

    Article  CAS  Google Scholar 

  37. Freeman, M. Feedback control of intercellular signalling in development. Nature 408, 313–319 (2000).

    Article  CAS  Google Scholar 

  38. Umulis, D., O'Connor, M. B. & Blair, S. S. The extracellular regulation of bone morphogenetic protein signaling. Development 136, 3715–3728 (2009).

    Article  CAS  Google Scholar 

  39. Thomas, J. T., Canelos, P., Luyten, F. P. & Moos, M., Jr. Xenopus SMOC-1 inhibits bone morphogenetic protein signaling downstream of receptor binding and is essential for postgastrulation development in Xenopus. J. Biol. Chem. 284, 18994–19005 (2009).

    Article  CAS  Google Scholar 

  40. Parks, A. L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet. 36, 288–292 (2004).

    Article  CAS  Google Scholar 

  41. Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846 (2004).

    Article  CAS  Google Scholar 

  42. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  Google Scholar 

  43. Barolo, S., Castro, B. & Posakony, J. W. New Drosophila transgenic reporters: insulated P-element vectors expressing fast-maturing RFP. Biotechniques 36, 436–442 (2004).

    Article  CAS  Google Scholar 

  44. Bakkers, J., Hild, M., Kramer, C., Furutani-Seiki, M. & Hammerschmidt, M. Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev. Cell 2, 617–627 (2002).

    Article  CAS  Google Scholar 

  45. Kelley, C., Yee, K., Harland, R. & Zon, L. I. Ventral expression of GATA-1 and GATA-2 in the Xenopus embryo defines induction of hematopoietic mesoderm. Dev. Biol. 165, 193–205 (1994).

    Article  CAS  Google Scholar 

  46. Joly, J. S., Joly, C., Schulte-Merker, S., Boulekbache, H. & Condamine, H. The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos. Development 119, 1261–1275 (1993).

    CAS  PubMed  Google Scholar 

  47. Li, Y., Allende, M. L., Finkelstein, R. & Weinberg, E. S. Expression of two zebrafish orthodenticle-related genes in the embryonic brain. Mech. Dev. 48, 229–244 (1994).

    Article  CAS  Google Scholar 

  48. Nikaido, M. et al. Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites. Nat. Genet. 31, 195–199 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Basler, H. Nakato, S. Eaton, N. Perrimon, T. Kornberg, W. Gehring, J.P. Vincent, O. Shimmi and the Bloomington Stock Centre for fly lines, E. Laufer and T. Jessell for the pMad antibody and F. Bonath for technical assistance. We are indebted to B. Müller and K. Basler for sharing unpublished data at initial stages of the project. We are grateful to W. Driever, B. Hartmann, F. Hamaratoglou and M. Simons for comments on the manuscript, A. Weiss for suggesting the name pentagone and the Life Imaging Facility of SFB592 for technical support. Work in the laboratory of M.A. was supported by the Kantons Basel-Stadt and Basel-Land, by the Swiss National Science Foundation and by SystemsX.ch within the framework of the wingX RTD. A.S. was supported by a fellowship of Research Training Program GRK1104 and by the Spemann Graduate School of Biology and Medicine. Research in the G.P. laboratory was funded by a grant of the DFG collaborative research centre SFB592.

Author information

Authors and Affiliations

Authors

Contributions

R.V., A.S., S.K. and G.P. performed and analysed experiments. L.P. and M.H. contributed the zebrafish experiments. R.V., M.H., M.A. and G.P. designed and supervised experiments. G.P. wrote the manuscript.

Corresponding author

Correspondence to George Pyrowolakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1916 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuilleumier, R., Springhorn, A., Patterson, L. et al. Control of Dpp morphogen signalling by a secreted feedback regulator. Nat Cell Biol 12, 611–617 (2010). https://doi.org/10.1038/ncb2064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing