Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens

Abstract

Classic cadherin receptors cooperate with regulators of the actin cytoskeleton to control tissue organization in health and disease. At the apical junctions of epithelial cells, the cadherin ring of the zonula adherens (ZA) couples with a contiguous ring of actin filaments1,2,3 to support morphogenetic processes such as tissue integration and cellular morphology4,5. However, the molecular mechanisms that coordinate adhesion and cytoskeleton at these junctions are poorly understood. Previously we identified non-muscle myosin II as a target of Rho signalling that supports cadherin junctions in mammalian epithelial cells6. Myosin II has various cellular functions, which are increasingly attributable to the specific biophysical properties and regulation of its different isoforms7. Here we report that myosin II isoforms have distinct and necessary roles at cadherin junctions. Although two of the three mammalian myosin II isoforms are found at the ZA, their localization is regulated by different upstream signalling pathways. Junctional localization of myosin IIA required E-cadherin adhesion, Rho/ROCK and myosin light-chain kinase, whereas junctional myosin IIB depended on Rap1. Further, these myosin II isoforms support E-cadherin junction integrity by different mechanisms. Myosin IIA RNA-mediated interference (RNAi) selectively perturbed the accumulation of E-cadherin in the apical ZA, decreased cadherin homophilic adhesion and disrupted cadherin clustering. In contrast, myosin IIB RNAi decreased filament content, altered dynamics, and increased the lateral movement of the perijunctional actin ring. Myosin IIA and IIB therefore identify two distinct functional modules, with different upstream signals that control junctional localization, and distinct functional effects. We propose that these two isoform-based modules cooperate to coordinate adhesion receptor and F-actin organization to form apical cadherin junctions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myosin (Myo) IIA and myosin IIB localize to apical epithelial junctions.
Figure 2: Differential regulation of myosin IIA and myosin IIB localization at apical junctions.
Figure 3: Myosin IIA and myosin IIB are necessary for ZA integrity.
Figure 4: Homophilic adhesion and lateral clustering of E-cadherin requires myosin IIA but not myosin IIB.
Figure 5: Myosin IIB regulates the apical F-actin ring.

Similar content being viewed by others

References

  1. Boller, K., Vestweber, D. & Kemler, R. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell Biol. 100, 327–332 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Hirano, S., Nose, A., Hatta, K., Kawakami, A. & Takeichi, M. Calcium-dependent cell–cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J. Cell Biol. 105, 2501–2510 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Yonemura, S., Itoh, M., Nagafuchi, A. & Tsukita, S. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci. 108, 127–142 (1995).

    CAS  PubMed  Google Scholar 

  4. Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U. & Peifer, M. The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J. Cell Biol. 186, 57–73 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/ROCK orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Shewan, A. M. et al. Myosin 2 Is a key Rho kinase target necessary for the local concentration of E-cadherin at cell–cell contacts. Mol. Biol. Cell 16, 4531–4532 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De la Cruz, E. M. & Ostap, E. M. Relating biochemistry and function in the myosin superfamily. Curr. Opin. Cell Biol. 16, 61–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature Rev. Mol. Cell Biol. 10, 778–790 (2009).

    Article  CAS  Google Scholar 

  9. Conti, M. A. & Adelstein, R. S. Nonmuscle myosin II moves in new directions. J. Cell Sci. 121, 11–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Kolega, J. Cytoplasmic dynamics of myosin IIA and IIB: spatial 'sorting' of isoforms in locomoting cells. J. Cell Sci. 111, 2085–2095 (1998).

    CAS  PubMed  Google Scholar 

  11. Maddugoda, M. P., Crampton, M. S., Shewan, A. M. & Yap, A. S. Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell–cell contacts in mammalian epithelial cells. J. Cell Biol. 178, 529–540 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. den Elzen, N., Buttery, C. V., Maddugoda, M. P., Ren, G. & Yap, A. S. Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol. Biol. Cell 20, 3740–3750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsumura, F. Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol. 15, 371–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A. & Sellers, J. R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279, 35557–35563 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Dube, N. et al. The RapGEF PDZ-GEF2 is required for maturation of cell–cell junctions. Cell Signal. 20, 1608–1615 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Boettner, B. & Van Aelst, L. The Rap GTPase activator Drosophila PDZ-GEF regulates cell shape in epithelial migration and morphogenesis. Mol. Cell. Biol. 27, 7966–7980 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jeon, T. J., Lee, D. J., Merlot, S., Weeks, G. & Firtel, R. A. Rap1 controls cell adhesion and cell motility through the regulation of myosin II. J. Cell Biol. 176, 1021–1033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nature Cell Biol. 10, 1039–1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Conti, M. A., Even-Ram, S., Liu, C., Yamada, K. M. & Adelstein, R. S. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J. Biol. Chem. 279, 41263–41266 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Ma, X., Bao, J. & Adelstein, R. S. Loss of cell adhesion causes hydrocephalus in nonmuscel myosin II-B-ablated and mutated mice. Mol. Biol. Cell 18, 2305–2312 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, A., Wang, F. & Sellers, J. R. Mutations in human nonmuscle myosin IIA found in patients with May–Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function. J. Biol. Chem. 277, 46512–46517 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, K. Y., Kovacs, M., Kawamoto, S., Sellers, J. R. & Adelstein, R. S. Disease-associated mutations and alternative splicing alter the enzymatic and motile activity of nonmuscle myosins II-B and II.-C. J. Biol. Chem. 280, 22769–22775 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Otani, T., Ichii, T., Aono, S. & Takeichi, M. Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells. J. Cell Biol. 175, 135–146 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yap, A. S., Brieher, W. M., Pruschy, M. & Gumbiner, B. M. Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr. Biol. 7, 308–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. McLachlan, R. W., Kraemer, A., Helwani, F. M., Kovacs, E. M. & Yap, A. S. E-cadherin adhesion activates c-Src signaling at cell–cell contacts. Mol. Biol. Cell 18, 3214–3223 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yap, A. S., Niessen, C. & Gumbiner, B. M. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening and interaction with p120ctn. J. Cell Biol. 141, 779–789 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gavard, J. et al. Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J. Cell Sci. 117, 257–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Scott, J. A. et al. Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts. Mol. Biol. Cell 17, 1085–1095 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts. Cell 135, 948–959 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kametani, Y. & Takeichi, M. Basal-to-apical cadherin flow at cell junctions. Nature Cell Biol. 9, 92–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Goodwin, M., Kovacs, E. M., Thoreson, M. A., Reynolds, A. B. & Yap, A. S. Minimal mutation of the cytoplasmic tail inhibits the ability of E-cadherin to activate Rac but not phosphatidylinositol 3-kinase: direct evidence of a role for cadherin-activated Rac signaling in adhesion and contact formation. J. Biol. Chem. 278, 20533–20539 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Helwani, F. M. et al. Cortactin is necessary for E-cadherin-mediated contact formation and actin reorganization. J. Cell Biol. 164, 899–910 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kovacs, E. M., Ali, R. G., McCormack, A. J. & Yap, A. S. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 277, 6708–6718 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Verma, S. et al. Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive contacts. J. Biol. Chem. 279, 34062–34070 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Vitriol, E. A., Uetrecht, A. C., Shen, F., Jacobson, K. & Bear, J. E. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins. Proc. Natl Acad. Sci. USA 104, 6702–6707 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues who provided reagents, especially Jim Bear for the pLL5.0 lentiviral construct, Rachel Murphy and Nigel McMillan for training us in lentiviral work, Regine Hartmann for her assistance with cloning, Suzie Verma and Carmen Buttery for assistance with tissue culture, and our colleagues in the laboratory for their untiring support and encouragement. The work in Australia was funded by the National Health and Medical Research Council (NHMRC) of Australia; that in the USA was supported by the National Institutes of Health (NIH). Confocal microscopy was performed at the Australian Cancer Research Foundation (ACRF) Cancer Biology Imaging Centre at the Institute for Molecular Bioscience, established with the generous support of the ACRF. We gratefully acknowledge the help and advice of Guanghui Wang and the NIH National Heart, Lung and Blood Institute Proteomics Core Facility. M.S. was an Erwin Schroedinger postdoctoral fellow of the Austrian Science Fund (FWF), and R.G.P. and A.S.Y. are Research Fellows of the NHMRC.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and A.S.Y. conceived and designed the experiments. M.S., H.L.C., E.M.K., M.A.C. and C.F. performed experiments and data analysis. J.M.L. and N.A.H. contributed to data analysis. R.G.P., E.M.K. and R.S.A. contributed to discussions and intellectual input. M.S. and A.S.Y. wrote the paper.

Corresponding author

Correspondence to Alpha S. Yap.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smutny, M., Cox, H., Leerberg, J. et al. Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 12, 696–702 (2010). https://doi.org/10.1038/ncb2072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing