Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fates-shifted is an F-box protein that targets Bicoid for degradation and regulates developmental fate determination in Drosophila embryos

Abstract

Bicoid (Bcd) is a morphogenetic protein that instructs patterning along the anterior–posterior (A–P) axis in Drosophila melanogaster embryos. Despite extensive studies, what controls the formation of a normal concentration gradient of Bcd remains an unresolved and controversial question. Here, we show that Bcd protein degradation is mediated by the ubiquitin-proteasome pathway. We have identified an F-box protein, encoded by fates-shifted (fsd), that has an important role in Bcd protein degradation by targeting it for ubiquitylation. Embryos from females lacking fsd have an altered Bcd gradient profile, resulting in a shift of the fatemap along the A–P axis. Our study is an experimental demonstration that, contrary to an alternative hypothesis, Bcd protein degradation is required for normal gradient formation and developmental fate determination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bcd is degraded through the proteasome-dependent pathway.
Figure 2: Bcd is ubiquitylated.
Figure 3: Fsd has a role in Bcd protein degradation.
Figure 4: Fsd interacts with both Skp1 and Bcd.
Figure 5: Posterior shift of fatemap along the A–P axis in fsd embryos.
Figure 6: Bcd gradient profiles in wild-type and fsd embryos.

Similar content being viewed by others

References

  1. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol 25, 1–47 (1969).

    Article  CAS  Google Scholar 

  2. Kerszberg, M. & Wolpert, L. Specifying positional information in the embryo: looking beyond morphogens. Cell 130, 205–209 (2007).

    Article  CAS  Google Scholar 

  3. Lander, A. D. Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256 (2007).

    Article  CAS  Google Scholar 

  4. Martinez Arias, A. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7, 34–44 (2006).

    Article  Google Scholar 

  5. Wartlick, O., Kicheva, A. & Gonzalez-Gaitan, M. Morphogen gradient formation. Cold Spring Harb. Perspect. Biol. 1, a001255 (2009).

    Article  PubMed  Google Scholar 

  6. Ephrussi, A. & St. Johnston, D. Seeing is believing. The bicoid morphogen gradient matures. Cell 116, 143–152 (2004).

    Article  CAS  Google Scholar 

  7. Driever, W. & Nüsslein-Volhard, C. A gradient of bicoid protein in Drosophila embryos. Cell 54, 83–93 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Struhl, G., Struhl, K. & Macdonald, P. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57, 1259–1273 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Driever, W., Thoma, G. & Nüsslein-Volhard, C. Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding site for the bicoid morphogen. Nature 340, 363–367 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Deng, J., Wang, W., Lu, L. J. & Ma, J. A two-dimensional simulation model of the Bicoid gradient in Drosophila. PLoS ONE 5, e10275 (2010).

    Article  PubMed  Google Scholar 

  11. Bergmann, S. et al. Pre-steady-state decoding of the Bicoid morphogen gradient. PLoS biology 5, e46 (2007).

    Article  PubMed  Google Scholar 

  12. Gregor, T., Bialek, W., van Steveninck, R. R., Tank, D. W. & Wieschaus, E. F. Diffusion and scaling during early embryonic pattern formation. Proc. Natl Acad. Sci. USA 102, 18403–18407 (2005).

    Article  CAS  Google Scholar 

  13. Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. & Tank, D. W. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Porcher, A. et al. The time to measure positional information: maternal hunchback is required for the synchrony of the Bicoid transcriptional response at the onset of zygotic transcription. Development 137, 2795–2804 (2010).

    Article  CAS  Google Scholar 

  15. Zhao, C. et al. The activity of the Drosophila morphogenetic protein Bicoid is inhibited by a domain located outside its homeodomain. Development 129, 1669–1680 (2002).

    CAS  Google Scholar 

  16. Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).

    Article  CAS  Google Scholar 

  17. Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl Acad. Sci. USA 96, 10403–10408 (1999).

    Article  CAS  Google Scholar 

  18. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O'Shea, E. K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl Acad. Sci. USA 103, 13004–13009 (2006).

    Article  CAS  Google Scholar 

  19. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  20. Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  Google Scholar 

  21. Herrmann, J., Lerman, L. O. & Lerman, A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ. Res. 100, 1276–1291 (2007).

    Article  CAS  Google Scholar 

  22. Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79–87 (2005).

    Article  CAS  Google Scholar 

  23. Hershko, A., Ganoth, D., Pehrson, J., Palazzo, R. E. & Cohen, L. H. Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J. Biol. Chem. 266, 16376–16379 (1991).

    CAS  Google Scholar 

  24. Hsu, T., McRackan, D., Vincent, T. S. & Gert de Couet, H. Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis. Nat. Cell Biol. 3, 538–543 (2001).

    Article  CAS  Google Scholar 

  25. Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    Article  CAS  Google Scholar 

  26. Conaway, R. C., Brower, C. S. & Conaway, J. W. Emerging roles of ubiquitin in transcription regulation. Science 296, 1254–1258 (2002).

    Article  CAS  Google Scholar 

  27. Muratani, M., Kung, C., Shokat, K. M. & Tansey, W. P. The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing. Cell 120, 887–899 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Kornitzer, D., Raboy, B., Kulka, R. G. & Fink, G. R. Regulated degradation of the transcription factor Gcn4. EMBO J. 13, 6021–6030 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998).

    Article  CAS  Google Scholar 

  31. Kipreos, E. T. & Pagano, M. The F-box protein family. Genome Biol 1, reviews3002– reviews3002.7 (2000).

  32. Ho, M. S., Tsai, P. I. & Chien, C. T. F-box proteins: the key to protein degradation. J. Biomed. Sci. 13, 181–191 (2006).

    Article  CAS  Google Scholar 

  33. Frohnhöfer, H. G. & Nüsslein-Volhard, C. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324, 120–125 (1986).

    Article  Google Scholar 

  34. Berleth, T. et al. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749–1756 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Driever, W., Siegel, V. & Nüsslein-Volhard, C. Autonomous determination of anterior structures in the early Drosophila embryo by the bicoid morphogen. Development 109, 811–820 (1990).

    CAS  Google Scholar 

  36. Driever, W. & Nüsslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration dependent manner. Cell 54, 95–104 (1988).

    Article  CAS  Google Scholar 

  37. Small, S., Kraut, R., Hoey, T., Warrior, R. & Levine, M. Transcriptional regulation of a pair-rule stripe in Drosophila. Genes & Dev. 5, 827–839 (1991).

    Article  CAS  Google Scholar 

  38. RiverA–Pomar, R. & Jackle, H. From gradients to stripes in Drosophila embryogenesis: filling in the gaps. Trends Genet. 12, 478–483 (1996).

    Article  Google Scholar 

  39. Driever, W. & Nüsslein-Volhard, C. Bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337, 138–143 (1989).

    Article  CAS  Google Scholar 

  40. Perkins, T. J., Jaeger, J., Reinitz, J. & Glass, L. Reverse engineering the gap gene network of Drosophila melanogaster. PLoS Comput. Biol. 2, e51 (2006).

    Article  PubMed  Google Scholar 

  41. Schaeffer, V., Janody, F., Loss, C., Desplan, C. & Wimmer, E. A. Bicoid functions without its TATA-binding protein-associated factor interaction domains. Proc. Natl Acad. Sci. USA 96, 4461–4466 (1999).

    Article  CAS  Google Scholar 

  42. Houchmandzadeh, B., Wieschaus, E. & Leibler, S. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802 (2002).

    Article  CAS  Google Scholar 

  43. Crauk, O. & Dostatni, N. Bicoid determines sharp and precise target gene expression in the Drosophila embryo. Curr. Biol. 15, 1888–1898 (2005).

    Article  CAS  Google Scholar 

  44. Rivera-Pomar, R., Lu, X., Taubert, H., Perrimon, N. & Jackle, H. Activation of posterior gap gene expression in the Drosophila blastoderm. Nature 376, 253–256 (1995).

    Article  CAS  Google Scholar 

  45. He, F. et al. Probing intrinsic properties of a robust morphogen gradient in Drosophila. Dev. Cell 15, 558–567 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. He, F. et al. Shaping a morphogen gradient for positional precision. Biophys. J. 99, 697–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Coppey, M., Berezhkovskii, A. M., Kim, Y., Boettiger, A. N. & Shvartsman, S. Y. Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein. Dev. Biol. 312, 623–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Spirov, A. et al. Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient. Development 136, 605–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. He, F. et al. Distance measurements via the morphogen gradient of Bicoid in Drosophila embryos. BMC Dev. Biol. 10, 80 (2010).

    Article  PubMed  Google Scholar 

  50. Jaeger, J. et al. Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–371 (2004).

    Article  CAS  Google Scholar 

  51. Manu et al. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS biology 7, e1000049 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lucchetta, E. M., Vincent, M. E. & Ismagilov, R. F. A precise Bicoid gradient is nonessential during cycles 11–13 for precise patterning in the Drosophila blastoderm. PLoS One 3, e3651 (2008).

    Article  PubMed  Google Scholar 

  53. Hecht, I., Rappel, W. J. & Levine, H. Determining the scale of the Bicoid morphogen gradient. Proc. Natl Acad. Sci. USA 106, 1710–1715 (2009).

    Article  CAS  Google Scholar 

  54. Gregor, T., McGregor, A. P. & Wieschaus, E. F. Shape and function of the Bicoid morphogen gradient in dipteran species with different sized embryos. Dev. Biol. 316, 350–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Grimm, O. & Wieschaus, E. The Bicoid gradient is shaped independently of nuclei. Development 137, 2857–2862 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Fu, D. & Ma, J. Interplay between positive and negative activities that influence the role of Bicoid in transcription. Nucleic acids research 33, 3985–3993 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Fu, D., Wen, Y. & Ma, J. The co-activator CREB-binding protein participates in enhancer-dependent activities of Bicoid. J. Biol. Chem. 279, 48725–48733 (2004).

    Article  CAS  Google Scholar 

  58. Forler, D. et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 21, 89–92 (2003).

    Article  CAS  Google Scholar 

  59. Crevel, G. & Cotterill, S. DNA replication in cell-free extracts from Drosophila melanogaster. EMBO J. 10, 4361–4369 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Clemens, J. C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  Google Scholar 

  61. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Surkova, S. et al. Characterization of the Drosophila segment determination morphome. Developmental biology 313, 844–862 (2008).

    Article  CAS  Google Scholar 

  64. Lattin, J., Carroll, J. D. & Green, P. E. Analyzing multivariate data. (Thompson Books/Cole, 2003).

    Google Scholar 

Download references

Acknowledgements

We thank members of our groups at CCHMC, in particular F. He, D. Cheung, W. Dui, and J. Deng, for discussion and assistance, and we thank Xinhua Lin's lab for some of the primers used in our dsRNAi screening. This work was supported in part by grants from NIH and NSF (to J.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and J.M. conceived and designed the study. J.L. performed all experiments and analysis. J.L. and J.M. interpreted the data, J.L. generated all figures and J.L. and J.M. wrote the paper.

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Ma, J. Fates-shifted is an F-box protein that targets Bicoid for degradation and regulates developmental fate determination in Drosophila embryos. Nat Cell Biol 13, 22–29 (2011). https://doi.org/10.1038/ncb2141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing