Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis

Abstract

Signalling by the GTPase RhoA, a key regulator of epithelial cell behaviour, can stimulate opposing processes: RhoA can promote junction formation and apical constriction, and reduce adhesion and cell spreading1,2. Molecular mechanisms are thus required that ensure spatially restricted and process-specific RhoA activation. For many fundamental processes, including assembly of the epithelial junctional complex, such mechanisms are still unknown. Here we show that p114RhoGEF is a junction-associated protein that drives RhoA signalling at the junctional complex and regulates tight-junction assembly and epithelial morphogenesis. p114RhoGEF is required for RhoA activation at cell–cell junctions, and its depletion stimulates non-junctional Rho signalling and induction of myosin phosphorylation along the basal domain. Depletion of GEF-H1, a RhoA activator inhibited by junctional recruitment3, does not reduce junction-associated RhoA activation. p114RhoGEF associates with a complex containing myosin II, Rock II and the junctional adaptor cingulin, indicating that p114RhoGEF is a component of a junction-associated Rho signalling module that drives spatially restricted activation of RhoA to regulate junction formation and epithelial morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p114RhoGEF is a tight-junction-associated RhoA GEF that regulates junction formation and the actin cytoskeleton.
Figure 2: p114RhoGEF regulates epithelial barrier formation.
Figure 3: p114RhoGEF regulates epithelial morphogenesis in three-dimensional cultures.
Figure 4: p114RhoGEF regulates RhoA signalling at cell junctions.
Figure 5: p114RhoGEF forms a complex with myosin II, cingulin and Rock II.

Similar content being viewed by others

References

  1. Terry, S., Nie, M., Matter, K. & Balda, M. S. Rho signaling and tight junction functions. Physiology (Bethesda) 25, 16–26 (2010).

    CAS  Google Scholar 

  2. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Aijaz, S., D’Atri, F., Citi, S., Balda, M. S. & Matter, K. Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev. Cell 8, 777–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Pertz, O. Spatio-temporal Rho GTPase signaling—where are we now? J. Cell Sci. 123, 1841–1850 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Rossman, K. L., Der, C. J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Nusrat, A. et al. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc. Natl Acad. Sci. USA 92, 10629–10633 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Braga, V. M., Machesky, L. M., Hall, A. & Hotchin, N. A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell–cell contacts. J. Cell Biol. 137, 1421–1431 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noren, N. K., Niessen, C. M., Gumbiner, B. M. & Burridge, K. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 276, 33305–33308 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Zondag, G. C. et al. Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J. Cell Biol. 149, 775–782 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coleman, M. L., Marshall, C. J. & Olson, M. F. RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat. Rev. Mol. Cell Biol. 5, 355–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Yamada, S. & Nelson, W. J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell–cell adhesion. J. Cell Biol. 178, 517–527 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benais-Pont, G. et al. Identification of a tight junction-associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J. Cell Biol. 160, 729–740 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nie, M., Aijaz, S., Leefa Chong San, I. V., Balda, M. S. & Matter, K. The Y-box factor ZONAB/DbpA associates with GEF-H1/Lfc and mediates Rho-stimulated transcription. EMBO Rep. 10, 1125–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Samarin, S. N., Ivanov, A. I., Flatau, G., Parkos, C. A. & Nusrat, A. Rho/Rho-associated kinase-II signaling mediates disassembly of epithelial apical junctions. Mol. Biol. Cell 18, 3429–3439 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blomquist, A. et al. Identification and characterization of a novel Rho-specific guanine nucleotide exchange factor. Biochem. J. 352, 319–325 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagata, K. & Inagaki, M. Cytoskeletal modification of Rho guanine nucleotide exchange factor activity: identification of a Rho guanine nucleotide exchange factor as a binding partner for Sept9b, a mammalian septin. Oncogene 24, 65–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Niu, J., Profirovic, J., Pan, H., Vaiskunaite, R. & Voyno-Yasenetskaya, T. G Protein betagamma subunits stimulate p114RhoGEF, a guanine nucleotide exchange factor for RhoA and Rac1: regulation of cell shape and reactive oxygen species production. Circ. Res. 93, 848–856 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Matter, K. & Balda, M. S. Functional analysis of tight junctions. Methods 30, 228–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Birkenfeld, J., Nalbant, P., Yoon, S. H. & Bokoch, G. M. Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol. 18, 210–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Kakiashvili, E. et al. GEF-H1 mediates tumor necrosis factor-alpha-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J. Biol. Chem. 284, 11454–11466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zegers, M. M., O’Brien, L. E., Yu, W., Datta, A. & Mostov, K. E. Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol. 13, 169–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Yoshizaki, H. et al. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J. Cell Biol. 162, 223–232 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sterpetti, P. et al. Activation of the Lbc Rho exchange factor proto-oncogene by truncation of an extended C terminus that regulates transformation and targeting. Mol. Cell Biol. 19, 1334–1345 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krendel, M., Zenke, F. T. & Bokoch, G. M. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat. Cell Biol. 4, 294–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Cordenonsi, M. et al. Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J. Cell Biol. 147, 1569–1582 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steed, E., Balda, M. S. & Matter, K. Dynamics and functions of tight junctions. Trends Cell Biol. 20, 142–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Guillemot, L. & Citi, S. Cingulin regulates claudin-2 expression and cell proliferation through the small GTPase RhoA. Mol. Biol. Cell 17, 3569–3577 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Braga, V. M. Cell–cell adhesion and signalling. Curr. Opin. Cell Biol. 14, 546–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Noren, N. K., Arthur, W. T. & Burridge, K. Cadherin engagement inhibits RhoA via p190RhoGAP. J. Biol. Chem. 278, 13615–13618 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Abouhamed, M. et al. Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Mol. Biol. Cell 20, 5074–5084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matter, K., McDowell, W., Schwartz, R. T. & Hauri, H. P. Asynchronous transport to the cell surface of intestinal brush border hydrolases is not due to differential trimming of N-linked oligosaccharides. J. Biol. Chem. 264, 13131–13139 (1989).

    CAS  PubMed  Google Scholar 

  34. Osler, M. E., Chang, M. S. & Bader, D. M. Bves modulates epithelial integrity through an interaction at the tight junction. J. Cell Sci. 118, 4667–4678 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Sourisseau, T. et al. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol. Cell Biol. 26, 2387–2398 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaffe, A. B., Kaji, N., Durgan, J. & Hall, A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J. Cell Biol. 183, 625–633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steed, E., Rodrigues, N. T., Balda, M. S. & Matter, K. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol. 10, 95 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Balda, M. S. et al. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell Biol. 134, 1031–1049 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.J.T. is supported by a Fight for Sight Studentship. This research was supported by Fight for Sight and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

S.J.T. carried out most of the experiments. All other authors carried out particular subsets of experiments. S.J.T., M.S.B. and K.M. designed the project and wrote the manuscript.

Corresponding authors

Correspondence to Maria S. Balda or Karl Matter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terry, S., Zihni, C., Elbediwy, A. et al. Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis. Nat Cell Biol 13, 159–166 (2011). https://doi.org/10.1038/ncb2156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing