Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration

Abstract

Regulation of microtubule dynamics at the cell cortex is important for cell motility, morphogenesis and division. Here we show that the Drosophila katanin Dm-Kat60 functions to generate a dynamic cortical-microtubule interface in interphase cells. Dm-Kat60 concentrates at the cell cortex of S2 Drosophila cells during interphase, where it suppresses the polymerization of microtubule plus-ends, thereby preventing the formation of aberrantly dense cortical arrays. Dm-Kat60 also localizes at the leading edge of migratory D17 Drosophila cells and negatively regulates multiple parameters of their motility. Finally, in vitro, Dm-Kat60 severs and depolymerizes microtubules from their ends. On the basis of these data, we propose that Dm-Kat60 removes tubulin from microtubule lattice or microtubule ends that contact specific cortical sites to prevent stable and/or lateral attachments. The asymmetric distribution of such an activity could help generate regional variations in microtubule behaviours involved in cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dm-Kat60 targets the cell cortex of interphase cells.
Figure 2: Depletion of Dm-Kat60 causes significant microtubule curling and bundling beneath the cortex.
Figure 3: Automated tracking and quantitative analysis of microtubule plus-end organization and dynamics in control and Dm-Kat60 RNAi-treated cells.
Figure 4: Dm-Kat60 targets to the leading edge of motile D17 cells and negatively regulates their migration.
Figure 5: Dm-Kat60 negatively regulates multiple parameters of D17-cell motility.
Figure 6: Dm-Kat60 negatively regulates actin protrusions at the cell edge.
Figure 7: Dm-Kat60 severs and depolymerizes microtubules from their ends.

Similar content being viewed by others

References

  1. van der Vaart, B., Akhmanova, A. & Straube, A. Regulation of microtubule dynamic instability. Biochem. Soc. Trans. 37, 1007–1013 (2009).

    Article  CAS  Google Scholar 

  2. Jaworski, J., Hoogenraad, C. C. & Akhmanova, A. Microtubule plus-end tracking proteins in differentiated mammalian cells. Int. J. Biochem. Cell Biol. 40, 619–637 (2008).

    Article  CAS  Google Scholar 

  3. Martin, S. G. Microtubule-dependent cell morphogenesis in the fission yeast. Trends Cell Biol. 19, 447–454 (2009).

    Article  CAS  Google Scholar 

  4. Siegrist, S. E. & Doe, C. Q. Microtubule-induced cortical cell polarity. Genes Dev. 21, 483–496 (2007).

    Article  CAS  Google Scholar 

  5. Watanabe, T., Noritake, J. & Kaibuchi, K. Regulation of microtubules in cell migration. Trends Cell Biol. 15, 76–83 (2005).

    Article  CAS  Google Scholar 

  6. Siller, K. H. & Doe, C. Q. Spindle orientation during asymmetric cell division. Nat. Cell Biol. 11, 365–374 (2009).

    CAS  PubMed  Google Scholar 

  7. Roll-Mecak, A. & McNally, F. J. Microtubule-severing enzymes. Curr. Opin. Cell Biol. 22, 96–103 (2010).

    Article  CAS  Google Scholar 

  8. McNally, F. J. & Vale, R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75, 419–429 (1993).

    Article  CAS  Google Scholar 

  9. Buster, D., McNally, K. & McNally, F. J. Katanin inhibition prevents the redistribution of gamma-tubulin at mitosis. J. Cell Sci. 115, 1083–1092 (2002).

    CAS  PubMed  Google Scholar 

  10. McNally, K., Audhya, A., Oegema, K. & McNally, F. J. Katanin controls mitotic and meiotic spindle length. J. Cell Biol. 175, 881–891 (2006).

    Article  CAS  Google Scholar 

  11. Srayko, M., O’Toole, E. T., Hyman, A. A. & Muller-Reichert, T. Katanin disrupts the microtubule lattice and increases polymer number in C. elegans meiosis. Curr. Biol. 16, 1944–1949 (2006).

    Article  CAS  Google Scholar 

  12. Zhang, D., Rogers, G. C., Buster, D. W. & Sharp, D. J. Three microtubule severing enzymes contribute to the ‘Pacman-flux’ machinery that moves chromosomes. J. Cell Biol. 177, 231–242 (2007).

    Article  CAS  Google Scholar 

  13. Karabay, A., Yu, W., Solowska, J. M., Baird, D. H. & Baas, P. W. Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. J. Neurosci. 24, 5778–5788 (2004).

    Article  CAS  Google Scholar 

  14. Yu, W. et al. The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol. Biol. Cell 19, 1485–1498 (2008).

    Article  CAS  Google Scholar 

  15. Casanova, M. et al. Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids. Mol. Microbiol. 71, 1353–1370 (2009).

    Article  CAS  Google Scholar 

  16. Quarmby, L. Cellular Samurai: katanin and the severing of microtubules. J. Cell Sci. 113Pt 16, 2821–2827 (2000).

    Google Scholar 

  17. Rasi, M. Q., Parker, J. D., Feldman, J. L., Marshall, W. F. & Quarmby, L. M. Katanin knockdown supports a role for microtubule severing in release of basal bodies before mitosis in Chlamydomonas. Mol. Biol. Cell 20, 379–388 (2009).

    Article  CAS  Google Scholar 

  18. Sharma, N. et al. Katanin regulates dynamics of microtubules and biogenesis of motile cilia. J. Cell Biol. 178, 1065–1079 (2007).

    Article  CAS  Google Scholar 

  19. Stoppin-Mellet, V. et al. Arabidopsis katanin binds microtubules using amultimeric microtubule-binding domain. Plant Physiol. Biochem. 45, 867–877 (2007).

    Article  CAS  Google Scholar 

  20. Stoppin-Mellet, V., Gaillard, J. & Vantard, M. Katanin’s severing activity favours bundling of cortical microtubules in plants. Plant J. 46, 1009–1017 (2006).

    Article  CAS  Google Scholar 

  21. Burk, D. H., Zhong, R. Q. & Ye, Z. H. The katanin microtubule severing protein in plants. J. Integr. Plant Biol. 49, 1174–1182 (2007).

    Article  CAS  Google Scholar 

  22. Burk, D. H., Liu, B., Zhong, R. Q., Morrison, W. H. & Ye, Z. H. A Katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807–827 (2001).

    Article  CAS  Google Scholar 

  23. Nakamura, M., Ehrhardt, D. W. & Hashimoto, T. Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat. Cell Biol. 12, 1064–1070 (2010).

    Article  CAS  Google Scholar 

  24. Mennella, V. et al. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nat. Cell Biol. 7, U235–U239 (2005).

    Article  Google Scholar 

  25. Ozon, S., Guichet, A., Gavet, O., Roth, S. & Sobel, A. Drosophila stathmin: a microtubule-destabilizing factor involved in nervous system formation. Mol. Biol. Cell 13, 698–710 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, H. et al. The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron 42, 913–926 (2004).

    Article  CAS  Google Scholar 

  27. Jankovics, F. & Brunner, D. Transiently reorganized microtubules are essential for zippering during dorsal closure in Drosophila melanogaster. Dev. Cell 11, 375–385 (2006).

    Article  CAS  Google Scholar 

  28. Borghese, L. et al. Systematic analysis of the transcriptional switch inducing migration of border cells. Dev. Cell 10, 497–508 (2006).

    Article  CAS  Google Scholar 

  29. Ui, K., Ueda, R. & Miyake, T. Cell lines from imaginal discs of Drosophila melanogaster. In Vitro Cell Dev. Biol. 23, 707–711 (1987).

    Article  CAS  Google Scholar 

  30. Stramer, B. et al. Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in Drosophila macrophages in vivo. J. Cell Biol. 189, 681–689 (2010).

    Article  CAS  Google Scholar 

  31. Kurtti, T. J. & Brooks, M. A. Growth and differentiation of lepidopteran myoblasts in vitro. Exp. Cell Res. 61, 407–412 (1970).

    Article  CAS  Google Scholar 

  32. Merchant, D., Ertl, R. L., Rennard, S. I., Stanley, D. W. & Miller, J. S. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol. 54, 215–221 (2008).

    Article  CAS  Google Scholar 

  33. Roll-Mecak, A. & Vale, R. D. The Drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr. Biol. 15, 650–655 (2005).

    Article  CAS  Google Scholar 

  34. Torres, J. Z., Miller, J. J. & Jackson, P. K. High-throughput generation of tagged stable cell lines for proteomic analysis. Proteomics 9, 2888–2891 (2009).

    Article  CAS  Google Scholar 

  35. Sonbuchner, T. M., Rath, U. & Sharp, D. J. KL1 is a novel microtubule severing enzyme that regulates mitotic spindle architecture. Cell Cycle 9, 2403–2411 (2010).

    Article  CAS  Google Scholar 

  36. Waterman-Storer, C. et al. Microtubules remodel actomyosin networks in Xenopus egg extracts via two mechanisms of F-actin transport. J. Cell Biol. 150, 361–376 (2000).

    Article  CAS  Google Scholar 

  37. Watanabe, T., Noritake, J. & Kaibuchi, K. Roles of IQGAP1 in cell polarization and migration. Novartis Found Symp. 269, 92–101 (2005).

    CAS  PubMed  Google Scholar 

  38. Waterman-Storer, C. M. & Salmon, E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol. 139, 417–434 (1997).

    Article  CAS  Google Scholar 

  39. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat. Cell Biol. 1, 45–50 (1999).

    Article  CAS  Google Scholar 

  40. McNally, F. J. & Thomas, S. Katanin is responsible for the M-phase microtubule-severing activity in Xenopus eggs. Mol. Biol. Cell 9, 1847–1861 (1998).

    Article  CAS  Google Scholar 

  41. Hartman, J. J. & Vale, R. D. Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science 286, 782–785 (1999).

    Article  CAS  Google Scholar 

  42. Rath, U. et al. The Drosophila kinesin-13, KLP59D, impacts Pacman- and Flux-based chromosome movement. Mol. Biol. Cell 20, 4696–4705 (2009).

    Article  CAS  Google Scholar 

  43. Desai, A., Verma, S., Mitchison, T. J., Walczak, C. E. & Kin, I. Kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  Google Scholar 

  44. Smith, T. F., Gaitatzes, C., Saxena, K. & Neer, E. J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999).

    Article  CAS  Google Scholar 

  45. Hudson, A. M. & Cooley, L. Understanding the function of actin-binding proteins through genetic analysis of Drosophila oogenesis. Annu. Rev. Genet. 36, 455–488 (2002).

    Article  CAS  Google Scholar 

  46. Hartman, J. J. et al. Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93, 277–287 (1998).

    Article  CAS  Google Scholar 

  47. McNally, K. P., Bazirgan, O. A. & McNally, F. J. Two domains of p80 katanin regulate microtubule severing and spindle pole targeting by p60 katanin. J. Cell Sci. 113Pt 9, 1623–1633 (2000).

    Google Scholar 

  48. Yu, W. et al. Regulation of microtubule severing by katanin subunits during neuronal development. J. Neurosci. 25, 5573–5583 (2005).

    Article  CAS  Google Scholar 

  49. Varga, V. et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8, 957–962 (2006).

    Article  CAS  Google Scholar 

  50. Gupta, M. L. Jr, Carvalho, P., Roof, D. M. & Pellman, D. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat. Cell Biol. 8, 913–923 (2006).

    Article  CAS  Google Scholar 

  51. Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427 (2005).

    Article  CAS  Google Scholar 

  52. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behaviour of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    Article  CAS  Google Scholar 

  53. Mishima, M. et al. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc. Natl Acad. Sci. USA 104, 10346–10351 (2007).

    Article  CAS  Google Scholar 

  54. Montenegro Gouveia, S. et al. In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends. Curr. Biol. 20, 1717–1722 (2010).

    Article  CAS  Google Scholar 

  55. Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002).

    Article  CAS  Google Scholar 

  56. Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166–2172 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.J.S., U.R. and D.Z. were supported by NIH grant no. R01-GM065940 (to D.J.S.). S.L.R., K.D.G. and J.D.C. were supported by March of Dimes grant no. 1-FY08-429 and NIH grant no. R01 GM081645 (both to S.L.R.). S.F.S. and A.M. were supported by NIH grant no. R01-GM086536 (to A.M.). J.L.R. and J.D.D-V. were supported by March of Dimes grant no. 5-FY09-47 (to J.L.R.). H.J.S., A.B.A., E.L. and T.R. were supported by NIH grant no. R01-GM083338 (to H.J.S.).

Author information

Authors and Affiliations

Authors

Contributions

D.Z. carried out and analysed most experiments using Drosophila S2 and human cells. D.Z. also purified and carried out the initial in vitro characterization of rDm-Kat60. K.D.G. carried out most experiments with Drosophila D17 under the direction of S.L.R.; J.D.C. also carried out analyses in D17 cells. S.F.S. designed the automated tracking algorithm under the direction of A.M. and used it to track microtubules in live-cell movies provided by D.Z.; J.D.D-V. and J.L.R. carried out numerous in vitro assays to quantify the microtubule-severing and end-depolymerase activities of rDM-Kat-60. A.B.A., E.L. and T.R. carried out and analysed the electron microscopy under the direction of H.J.S. U.R. carried out KLP59D for the electron microscopy assay. D.W.B. helped in the design of many experiments in S2 cells and made the model figure shown in Supplementary Information. D.J.S. wrote the manuscript (with the help of all authors, but particularly S.L.R.) and coordinated the efforts of the multiple laboratories involved in this project.

Corresponding author

Correspondence to David J. Sharp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1223 kb)

Supplementary Movie 1

Supplementary Information (AVI 4228 kb)

Supplementary Movie 2

Supplementary Information (AVI 5948 kb)

Supplementary Movie 3

Supplementary Information (AVI 2179 kb)

Supplementary Movie 4

Supplementary Information (AVI 5487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Grode, K., Stewman, S. et al. Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration. Nat Cell Biol 13, 361–369 (2011). https://doi.org/10.1038/ncb2206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing