Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells

Abstract

We identify LSD1 (lysine-specific demethylase 1; also known as KDM1A and AOF2) as a key histone modifier that participates in the maintenance of pluripotency through the regulation of bivalent domains, a chromatin environment present at the regulatory regions of developmental genes that contains both H3K4 di/trimethylation and H3K27 trimethylation marks. LSD1 occupies the promoters of a subset of developmental genes that contain bivalent domains and are co-occupied by OCT4 and NANOG in human embryonic stem cells, where it controls the levels of H3K4 methylation through its demethylase activity. Thus, LSD1 has a role in maintaining the silencing of several developmental genes in human embryonic stem cells by regulating the critical balance between H3K4 and H3K27 methylation at their regulatory regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LSD1 knockdown causes differentiation of human embryonic stem cells.
Figure 2: LSD1 knockdown causes the induction of developmental gene expression.
Figure 3: LSD1 enzymatic activity is essential to maintain its repressive potential.
Figure 4: The BMP2 pathway partially mediates the effects of LSD1 knockdown in human embryonic stem cells.
Figure 5: LSD1 knockdown causes earlier differentiation of human embryonic stem cells.
Figure 6: LSD1 knockdown causes an increase in the levels of H3K4 tri- and dimethylation at target genes, where it is recruited independently of REST (NRSF).
Figure 7: LSD1 overlaps with OCT4 and NANOG on genes preferably containing bivalent domains.

Similar content being viewed by others

References

  1. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, X. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat. Cell Biol. 9, 1428–1435 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Ballas, N. et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 31, 353–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Wissmann, M. et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat. Cell Biol. 9, 347–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Kontaki, H. & Talianidis, I. Lysine methylation regulates E2F1-induced cell death. Mol. Cell. 39, 152–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Raya, A. et al. Generation of cardiomyocytes from new human embryonic stem cell lines derived from poor-quality blastocysts. Cold Spring Harb. Symp. Quant. Biol. 73, 127–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, M. G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role forCoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Ku, M. et al. Genome-wide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bruce, A. W. et al. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc. Natl Acad. Sci. USA 101, 10458–10463 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Niakan, K. K. et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev. 24, 312–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seguin, C. A., Draper, J. S., Nagy, A. & Rossant, J. Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell 3, 182–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Buckley, N. J., Johnson, R., Sun, Y. M. & Stanton, L. W. Is REST a regulator of pluripotency? Nature 457, E5-6; discussion E7 (2009).

  27. Jorgensen, H. F., Chen, Z. F., Merkenschlager, M. & Fisher, A. G. Is REST required for ESC pluripotency? Nature 457 E4-5; discussion E7 (2009).

  28. Yamada, Y., Aoki, H., Kunisada, T. & Hara, A. Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance. Cell Stem Cell 6, 10–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Liang, J. et al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat. Cell Biol 10, 731–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. van den Berg, D. L. et al. An Oct4-centred protein interaction network in embryonic stem cells. Cell Stem Cell 6, 369–381 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Foster, C. T. et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell. Biol. 30, 4851–4863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. (2011).

  34. de la Cruz, C. C. et al. Developmental regulation of Suz 12 localization. Chromosoma 114, 183–192 (2005).

    Article  PubMed  Google Scholar 

  35. Greco, S. J., Smirnov, S. V., Murthy, R. G. & Rameshwar, P. Synergy between the RE-1 silencer of transcription and NFκB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells. J. Biol. Chem. 282, 30039–30050 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pratt, T., Sharp, L., Nichols, J., Price, D. J. & Mason, J. O. Embryonic stem cells and transgenic mice ubiquitously expressing a tau-tagged green fluorescent protein. Dev. Biol. 228, 19–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Ritchie, M. E. et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics 23, 2700–2707 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genetics Mol. Biol. 3,1–26 Article3 (2004).

    Article  Google Scholar 

  40. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1, 289–300 (1995).

    Google Scholar 

  41. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rosenbloom, K. R. et al. ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res. 38, D620–D625 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protocols 4, 44–57 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Malik and I. Martinez for critical reading of the manuscript, D. Trono for plasmids pLVTHM and psPAX2, T. Pratt for plasmid pTP6, A. Consiglio for assistance with viral preparations and infection, R. Vassena, I. Rodriguez and A. Sanchez for help with the differentiation experiments, B. Christen for advice on cell treatments and V. Astro for assistance with movie preparation. M.J.B. was partially supported by the Ramón y Cajal programme. B.S. is a predoctoral fellow from the Ministerio de Ciencia e Innovación of Spain. This work was partially supported by grants RYC-2007-01510 and SAF2009-08588 from the Ministerio de Ciencia e Innovación of Spain to M.J.B. and grants from the G. Harold and Leila Y. Mathers Charitable Foundation, Sanofi-Aventis, MICINN, CIBER and Fundacion Cellex to J.C.I.B.

Author information

Authors and Affiliations

Authors

Contributions

A.A. set up techniques, designed and carried out the experiments with the assistance of B.S., J.C. and M.J.B. and wrote the paper. S.B. and I.P. carried out the bioinformatics analysis. M.J.B. conceived and supervised the project and wrote the paper. J.C.I.B. supervised the project and wrote the paper.

Corresponding author

Correspondence to Juan Carlos Izpisua Belmonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1054 kb)

Supplementary Information

Supplementary Movie 1 (MOV 4835 kb)

Supplementary Information

Supplementary Movie 2 (MOV 5025 kb)

Supplementary Information

Supplementary Table 1 (XLS 179 kb)

Supplementary Information

Supplementary Table 2 (XLS 140 kb)

Supplementary Information

Supplementary Table 3 (XLS 102 kb)

Supplementary Information

Supplementary Table 4 (XLS 10028 kb)

Supplementary Information

Supplementary Table 5 (XLS 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamo, A., Sesé, B., Boue, S. et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 13, 652–659 (2011). https://doi.org/10.1038/ncb2246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing