Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis

Abstract

Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that multiple-lumen formation is caused by apicobasal polarity conversion, and demonstrate that in situ modulation of lipid biosynthesis is sufficient to reversibly switch apical domain identities on growing membranes of single post-mitotic cells, shifting lumen positions. Follow-on targeted lipid-biosynthesis pathway screens and functional genetic assays were designed to identify a putative single causative lipid species. They demonstrate that fatty-acid biosynthesis affects polarity through sphingolipid synthesis, and reveal ceramide glucosyltransferases (CGTs) as end-point biosynthetic enzymes in this pathway. Our findings identify glycosphingolipids, CGT products and obligate membrane lipids, as critical determinants of in vivo polarity and indicate that they sort new components to the expanding apical membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apicobasal polarity conversion and ectopic lumen formation in the intestines of lipid-biosynthetic-enzyme-depleted animals.
Figure 2: Apicobasolateral membrane and apical junction components in lipid-biosynthetic-enzyme-depleted intestines.
Figure 3: Lipid biosynthesis perturbations reversibly shift apicobasal domain identities and lumen position on expanding intestinal membranes in situ.
Figure 4: Germline mutations in fatty-acid-biosynthetic enzymes cause intestinal tubulogenesis defects that are rescued with exogenous fatty acids.
Figure 5: Tubular polarity requires saturated LCFA biosynthesis.
Figure 6: Fatty-acid biosynthesis determines tubular polarity through sphingolipid synthesis.
Figure 7: Tubular polarity requires CGTs and GSLs.
Figure 8: Subcellular localization of exogenous sphingolipids and the effects of sphingolipid-biosynthesis suppression on vesicular trafficking.

Similar content being viewed by others

References

  1. Pfeffer, S. R. & Rothman, J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 56, 829–852 (1987).

    Article  CAS  Google Scholar 

  2. Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 9, 833–845 (2008).

    Article  CAS  Google Scholar 

  3. St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell 141, 757–774 (2010).

    Article  CAS  Google Scholar 

  4. Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol. 12, 1035–1045 (2010).

    Article  CAS  Google Scholar 

  5. Martin-Belmont, F. & Rodriguez-Foretell, A. E. Acquisition of membrane polarity in epithelial tube formation patterns, signalling pathways, molecular mechanisms, and disease. Int. Rev. Cell Mol. Biol. 274, 129–182 (2009).

    Article  CAS  Google Scholar 

  6. Kemphues, K. J., Press, J. R., Morton, D. G. & Chang, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).

    Article  CAS  Google Scholar 

  7. Nelson, W. J. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003).

    Article  CAS  Google Scholar 

  8. Rodriguez-Boolean, E., Kibitzer, G. & Müsch, A. Organisation of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol. 6, 233–247 (2005).

    Article  CAS  Google Scholar 

  9. Di Paolo, G. & De Camilla, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  Google Scholar 

  10. Lippincott-Schwartz, J. & Phair, R. D. Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu. Rev. Biophys. 39, 559–578 (2010).

    Article  CAS  Google Scholar 

  11. Mays, R. W. et al. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J. Cell Biol. 130, 1105–1115 (1995).

    Article  CAS  Google Scholar 

  12. Sprong, H. et al. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J. Cell Biol. 155, 369–380 (2001).

    Article  CAS  Google Scholar 

  13. Hoekstra, D., Maier, O., van der Wouden, J. M., Slimane, T. A. & van Ijzendoorn, S. C. D. Membrane dynamics and cell polarity: the role of sphingolipids. J. Lipid Res. 44, 869–877 (2003).

    Article  CAS  Google Scholar 

  14. Degroote, S., Wolthoorn, J. & van Meer, G. The cell biology of glycosphingolipids. Semin. Cell Dev. Biol. 15, 375–387 (2004).

    Article  CAS  Google Scholar 

  15. Mayor, S. & Riezman, H. Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell Biol. 5, 110–120 (2004).

    Article  CAS  Google Scholar 

  16. Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988).

    Article  CAS  Google Scholar 

  17. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  CAS  Google Scholar 

  18. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  Google Scholar 

  19. Furukawa, K., Tokuda, N., Okuda, T. & Tajima, O. Glycosphingolipids in engineered mice: insights into function. Semin. Cell Dev. Biol. 15, 389–396 (2004).

    Article  CAS  Google Scholar 

  20. Lynch, A. M. & Hardin, J. The assembly and maintenance of epithelial junctions in C. elegans. Front. Biosci. 14, 1414–1432 (2009).

    Article  CAS  Google Scholar 

  21. Knight, C. G., Patel, M. N., Azevedo, R. B. & Leroi, A. M. A novel mode of ecdysozoan growth in Caenorhabditis elegans. Evol. Dev. 4, 16–27 (2002).

    Article  Google Scholar 

  22. Baugh, L. R. & Sternberg, P. W. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr. Biol. 16, 780–785 (2006).

    Article  CAS  Google Scholar 

  23. Entchev, E. V. et al. LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans. J. Biol. Chem. 283, 17550–17560 (2008).

    Article  CAS  Google Scholar 

  24. Kniazeva, M., Euler, T. & Han, M. A branched-chain fatty acid is involved in post-embryonic growth control in parallel to the insulin receptor pathway and its biosynthesis is feedback-regulated in C. elegans. Genes Dev. 22, 2102–2110 (2008).

    Article  CAS  Google Scholar 

  25. Rappleye, C. A., Tagawa, A., Le Bot, N., Ahringer, J. & Aroian, R. V. Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC Dev. Biol. 3, 8 (2003).

    Article  Google Scholar 

  26. Kuervers, L. M., Jones, C. L., O’Neil, N. J. & Baillie, D. L. The sterol modifying enzyme LET-767 is essential for growth, reproduction and development in Caenorhabditis elegans. Mil. Genet. Genomics 270, 121–131 (2003).

    Article  CAS  Google Scholar 

  27. Kniazeva, M., Crawford, Q. T., Seiber, M., Wang, C. Y. & Han, M. Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol. 2, E257 (2004).

    Article  CAS  Google Scholar 

  28. Brock, T. J., Browse, J. & Watts, J. L. Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics 176, 865–875 (2007).

    Article  CAS  Google Scholar 

  29. Watts, J. L. & Browse, J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 5854–5859 (2002).

    Article  CAS  Google Scholar 

  30. Van Ijzendoorn, S. C. D., Van Der Wouden, J. M., Liebisch, G., Schmitz, G. & Hoekstra, D. Polarized membrane traffic and cell polarity development is dependent on dihydroceramide synthase-regulated sphinganine turnover. Mol. Biol. Cell 15, 4115–4124 (2004).

    Article  CAS  Google Scholar 

  31. Chitwood, D. J., Lusby, W. R., Thompson, M. J., Kochansky, J. P. & Howarth, O. W. The glycosylceramides of the nematode Caenorhabditis elegans contain an unusual, branched-chain sphingoid base. Lipids 30, 567–573 (1995).

    Article  CAS  Google Scholar 

  32. Ichikawa, S. & Hirabayashi, Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 8, 198–202 (1998).

    Article  CAS  Google Scholar 

  33. Leipelt, M. et al. Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J. Biol. Chem. 276, 33621–33629 (2001).

    Article  CAS  Google Scholar 

  34. Marza, E., Simonsen, K. T., Faergeman, N. J. & Lesa, G. M. Expression of ceramide glucosyltransferases, which are essential for glycosphingolipid synthesis, is only required in a small subset of C. elegans cells. J. Cell Sci. 122, 822–833 (2009).

    Article  CAS  Google Scholar 

  35. Nomura, K. H. et al. Ceramide glucosyltransferase of the nematode Caenorhabditis elegans is involved in oocyte formation and in early embryonic cell division. Glycobiology 21, 834–848 (2011).

    Article  CAS  Google Scholar 

  36. Maier, O., Oberle, V. & Hoekstra, D. Fluorescent lipid probes: some properties and applications (a review). Chem. Phys. Lipids 116, 3–18 (2002).

    Article  CAS  Google Scholar 

  37. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  CAS  Google Scholar 

  38. Varki, A. Essentials of Glycobiology 2nd edn (Cold Spring Harbor Laboratory Press, 2009).

    Google Scholar 

  39. Griffitts, J. S. et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307, 922–925 (2005).

    Article  CAS  Google Scholar 

  40. Gerdt, S., Lochnit, G., Dennis, R. D. & Geyer, R. Isolation and structural analysis of three neutral glycosphingolipids from a mixed population of Caenorhabditis elegans (Nematoda:Rhabditida). Glycobiology 7, 265–275 (1997).

    Article  CAS  Google Scholar 

  41. Futerman, A. H. & Riezman, H. The ins and outs of sphingolipid synthesis. Trends Cell Biol. 15, 312–318 (2005).

    Article  CAS  Google Scholar 

  42. Weisz, O. A. & Rodriguez-Boolean, E. Apical trafficking in epithelial cells: signals, clusters and motors. J. Cell Sci. 122, 4253–4266 (2009).

    Article  CAS  Google Scholar 

  43. Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell 17, 1286–1297 (2006).

    Article  CAS  Google Scholar 

  44. Rolls, M. M., Hall, D. H., Victor, M., Stelzer, E. H. & Rapoport, T. A. Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. Mol. Biol. Cell 13, 1778–1791 (2002).

    Article  CAS  Google Scholar 

  45. Yamashita, T. et al. A vital role for glycosphingolipid synthesis during development and differentiation. Proc. Natl Acad. Sci. USA 96, 9142–9147 (1999).

    Article  CAS  Google Scholar 

  46. Rao, R. P. & Acharya, J. K. Sphingolipids and membrane biology as determined from genetic models. Prostaglandins Other Lipid Mediat. 85, 1–16 (2008).

    Article  CAS  Google Scholar 

  47. Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci. 117, 5955–5964 (2004).

    Article  CAS  Google Scholar 

  48. Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat. Cell Biol. 8, 963–970 (2006).

    Article  CAS  Google Scholar 

  49. Martin-Belmont, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    Article  CAS  Google Scholar 

  50. Haucke, V. & Di Paolo, G. Lipids and lipid modifications in the regulation of membrane traffic. Curr. Opin. Cell Biol. 19, 426–435 (2007).

    Article  CAS  Google Scholar 

  51. Simons, K. & Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688–699 (2010).

    Article  CAS  Google Scholar 

  52. Seamen, E., Blanchette, J. M. & Han, M. P-type ATPase TAT-2 negatively regulates monomethyl branched-chain fatty acid mediated function in post-embryonic growth and development in C. elegans. PLoS Genet. 5, e1000589 (2009).

    Article  CAS  Google Scholar 

  53. Wandall, H. H. et al. Egghead and brainiac are essential for glycosphingolipid biosynthesis in vivo. J. Biol. Chem. 280, 4858–4863 (2005).

    Article  CAS  Google Scholar 

  54. Mishra, R., Grzybek, M., Niki, T., Hirashima, M. & Simons, K. Galectin-9 trafficking regulates apical-basal polarity in Madin–Darby canine kidney epithelial cells. Proc. Natl Acad. Sci. USA 107, 17633–17638 (2010).

    Article  Google Scholar 

  55. Sampaio, J. L. et al. Membrane lipidome of an epithelial cell line. Proc. Natl Acad. Sci. USA 108, 1903–1907 (2011).

    Article  Google Scholar 

  56. Vance, D. E. & Vance, J. E. Biochemistry of lipids, lipoproteins and membranes 5th edn (Elsevier, 2008).

    Google Scholar 

  57. Gobel, V., Barrett, P. L., Hall, D. H. & Fleming, J. T. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev. Cell 6, 865–873 (2004).

    Article  Google Scholar 

  58. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 56, 110–156 (1977).

    Article  CAS  Google Scholar 

  59. Legouis, R. et al. LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nat. Cell Biol. 2, 415–422 (2000).

    Article  CAS  Google Scholar 

  60. Kurzchalia, T. V. & Ward, S. Why do worms need cholesterol? Nat. Cell Biol. 5, 684–688 (2003).

    Article  CAS  Google Scholar 

  61. Martinez-Alonso, E., Egea, G., Ballesta, J. & Martinez-Menarguez, J. A. Structure and dynamics of the Golgi complex at 15 °C: low temperature induces the formation of Golgi-derived tubules. Traffic 6, 32–44 (2005).

    Article  CAS  Google Scholar 

  62. Onelli, E., Prescianotto-Baschong, C., Caccianiga, M. & Moscatelli, A. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J. Exp. Bot. 59, 3051–3068 (2008).

    Article  CAS  Google Scholar 

  63. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  Google Scholar 

  65. Curran, S. P. & Ruvkun, G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet. 3, e56 (2007).

    Article  CAS  Google Scholar 

  66. Hobert, O. PCR fusion-based approach to create reporter gene constructsfor expression analysis in transgenic C. elegans. Biotechniques 32, 728–730 (2002).

    Article  CAS  Google Scholar 

  67. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  Google Scholar 

  68. Miller, D. M. & Shakes, D. C. Immunofluorescence microscopy. Methods Cell Biol. 48, 365–394 (1995).

    Article  CAS  Google Scholar 

  69. Hall, D. H. Electron microscopy and three-dimensional image reconstruction. Methods Cell Biol. 48, 395–436 (1995).

    Article  CAS  Google Scholar 

  70. Sullards, M. C., Wang, E., Peng, Q. & Merrill, A. H. Jr Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry. Cell Mil. Biol. (Noisy-le-grand) 49, 789–797 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

Strains and plasmids were provided by D. Baillie (Fraser University, Burnaby, British Columbia, Canada), A. Croce (IFOM Istituto FIRC di Oncologia Molecolare, Milan, Italy), B. Grant (Rutgers University, Piscataway, New Jersey, USA), K. Kemphues (Cornell University, Ithaca, New York, USA), K. Nehrke (University of Rochester Medical Center, Rochester New York, USA), G. Ruvkun (Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA), K. Strange (Vanderbilt University Medical Center, Salisbury Cove Maine, USA), J. Simske (Case Western Reserve University School of Medicine, Cleveland, Ohio, USA), S. Mitani (National Bioresource Project Japan) and the Caenorhabditis Genetics Center (NIH Center for Research Resources). We thank G. Ruvkun for the lethal RNAi library, and J. Moore (Avanti Polar Lipids); Mary McKee (MGH Microscopy Core/partially funded by the IBD grant DK43351 and BA DE award DK57521) and K. Nygen; Christopher Crocker; and Edward Membreno for contributions to LC/MS; TEM; illustrations and C. elegans maintenance, respectively. We thank F. Solomon and B. Winckler for critical reading of the manuscript and H. Weinstein and A. Walker for ongoing support. This work was supported by NIH grants HD044589 and GM078653 and a Mattina R. Proctor Award to V.G.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. generated and assembled most of the data and contributed to project design, data analysis and writing of the manuscript. N.A. participated in most experiments, carried out the glycosylation screen and contributed to experimental design and data analysis. L.A.K. contributed to the genetic interaction experiments. D.H.H. and J.T.F. contributed to electron microscopy experiments and J.T.F. to writing of the manuscript. V.G. conceived and directed the project, participated in experiments and wrote the manuscript.

Corresponding author

Correspondence to Verena Göbel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1085 kb)

Supplementary Table 1

Supplementary Information (XLS 113 kb)

Supplementary Table 2

Supplementary Information (XLS 47 kb)

Supplementary Table 3

Supplementary Information (XLS 44 kb)

Supplementary Table 4

Supplementary Information (XLS 39 kb)

Supplementary Table 5

Supplementary Information (XLS 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Abraham, N., Khan, L. et al. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat Cell Biol 13, 1189–1201 (2011). https://doi.org/10.1038/ncb2328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing