Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear actin and myosins: Life without filaments

Subjects

A Corrigendum to this article was published on 29 May 2015

A Corrigendum to this article was published on 29 May 2015

This article has been updated

Abstract

Actin and myosin are major components of the cell cytoskeleton, with structural and regulatory functions that affect many essential cellular processes. Although they were traditionally thought to function only in the cytoplasm, it is now well accepted that actin and multiple myosins are found in the nucleus. Increasing evidence on their functional roles has highlighted the importance of these proteins in the nuclear compartment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The roles of actin in the nucleus.
Figure 2: Myosin in the nucleus.
Figure 3: Actin and myosins in transcription.

Similar content being viewed by others

Change history

  • 29 April 2015

    In the version of this Review originally published the authors inadvertently omitted a key reference. This has now been added to the caption of Fig. 3 in the online version: 'The actin-binding protein WASP has been discovered in the nucleus and modulates transcription independently or with the ARP2/3 complex97.' 97. Taylor, M. D. et al. Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci. Transl. Med. 2, 37ra44 (2010).

  • 14 May 2015

    In the version of this Review originally published reference 34 should have appeared in the caption of Fig. 3: 'The actin-binding protein WASP has been discovered in the nucleus and modulates transcription independently or with the ARP2/3 complex34,97.' This has been corrected in the online versions of the Review.

References

  1. Sellers, J. R. Fifty years of contractility research post sliding filament hypothesis. J. Muscle Res. Cell Motil. 25, 475–482 (2004).

    PubMed  Google Scholar 

  2. Schmidt, A. & Hall, M. N. Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 305–338 (1998).

    CAS  PubMed  Google Scholar 

  3. Pollard, T. D. & Korn, E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J. Biol. Chem. 248, 4682–4690 (1973).

    CAS  PubMed  Google Scholar 

  4. Nowak, G. et al. Evidence for the presence of myosin I in the nucleus. J. Biol. Chem. 272, 17176–17181 (1997).

    CAS  PubMed  Google Scholar 

  5. Pestic-Dragovich, L. et al. A myosin I isoform in the nucleus. Science 290, 337–341 (2000).

    CAS  PubMed  Google Scholar 

  6. Pederson T. As functional nuclear actin comes into view, is it globular, filamentous, or both? J. Cell Biol. 180, 1061–1064 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    CAS  PubMed  Google Scholar 

  8. Gonsior, S. M. et al. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J. Cell Sci. 112, 797–809 (1999).

    CAS  PubMed  Google Scholar 

  9. Schoenenberger, C. A. et al. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J. Struct. Biol. 152, 157–168 (2005).

    CAS  PubMed  Google Scholar 

  10. Kandasamy, M. K., McKinney, E. C. & Meagher, R. B. Differential sublocalization of actin variants within the nucleus. Cytoskeleton (Hoboken) 67, 729–743 (2010).

    CAS  Google Scholar 

  11. McDonald, D., Carrero, G., Andrin, C., de Vries, G. & Hendzel, M. J. Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J. Cell Biol. 172, 541–552 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fukui Y, Katsumaru, H. Dynamics of nuclear actin bundle induction by dimethyl sulfoxide and factors affecting its development. J. Cell Biol. 84, 131–140 (1980).

    CAS  PubMed  Google Scholar 

  13. Nishida, E. et al. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc. Natl Acad. Sci. USA 84, 5262–5266 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pendleton, A., Pope, B., Weeds, A. & Koffer, A. Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells. J. Biol. Chem. 278, 14394–14400 (2003).

    CAS  PubMed  Google Scholar 

  15. Domazetovska, A. et al. Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Ann. Neurol. 62, 597–608 (2007).

    CAS  PubMed  Google Scholar 

  16. Taylor, M. P., Koyuncu, O. O. & Enquist, L. W. Subversion of the actin cytoskeleton during viral infection. Nat. Rev. Microbiol. 9, 427–439 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Goley, E. D. et al. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 314, 464–467 (2006).

    CAS  PubMed  Google Scholar 

  18. Feierbach, B., Piccinotti, S., Bisher, M., Denk, W. & Enquist, L. W. α-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog. 2, e85 (2006).

    PubMed  PubMed Central  Google Scholar 

  19. Chang, L. et al. Herpesviral replication compartments move and coalesce at nuclear speckles to enhance export of viral late mRNA. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1103411108 (2011).

  20. Hofmann, W. A. et al. SUMOylation of nuclear actin. J. Cell Biol. 186, 193–200 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Abe, A., Saeki, K., Yasunaga, T. & Wakabayashi, T. Acetylation at the N-terminus of actin strengthens weak interaction between actin and myosin. Biochem. Biophys. Res. Commun. 268, 14–19 (2000).

    CAS  PubMed  Google Scholar 

  22. Karakozova, M. et al. Arginylation of β-actin regulates actin cytoskeleton and cell motility. Science 313, 192–196 (2006).

    CAS  PubMed  Google Scholar 

  23. Wang, J. et al. Stable and controllable RNA interference: Investigating the physiological function of glutathionylated actin. Proc. Natl Acad. Sci. USA 100, 5103–5106 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pekiner, C. et al. Glycation of brain actin in experimental diabetes. J. Neurochem. 61, 436–442 (1993).

    CAS  PubMed  Google Scholar 

  25. Aslan, M. et al. Nitric oxide-dependent generation of reactive species in sickle cell disease. Actin tyrosine induces defective cytoskeletal polymerization. J. Biol. Chem. 278, 4194–4204 (2003).

    CAS  PubMed  Google Scholar 

  26. Thom, S. R., Bhopale, V. M., Mancini, D. J. & Milovanova, T. N. Actin S-nitrosylation inhibits neutrophil β2 integrin function. J. Biol. Chem. 283, 10822–10834 (2008).

    CAS  PubMed  Google Scholar 

  27. Gettemans, J. et al. Nuclear actin-binding proteins as modulators of gene transcription. Traffic 6, 847–857 (2005).

    CAS  PubMed  Google Scholar 

  28. Iida, K., Matsumoto, S. & Yahara, I. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct. Funct. 17, 39–46 (1992).

    CAS  PubMed  Google Scholar 

  29. Stuven, T., Hartmann, E. & Gorlich, D. Exportin 6: a novel nuclear export receptor that is specific for profilin–actin complexes. EMBO J. 22, 5928–5940 (2003).

    PubMed  PubMed Central  Google Scholar 

  30. Hubert, T., Van Impe, K., Vandekerckhove, J. & Gettemans, J. The F-actin filament capping protein CapG is a bona fide nucleolar protein. Biochem. Biophys. Res. Commun. 377, 699–704 (2008).

    CAS  PubMed  Google Scholar 

  31. Ambrosino, C. et al. Identification of a hormone-regulated dynamic nuclear actin network associated with estrogen receptor α in human breast cancer cell nuclei. Mol. Cell Proteomics 9, 1352–1367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, S. M., Huang, C. J., Wang, W. M., Kang, J. C. & Hsu, W. C. The enhancement of nuclear receptor transcriptional activation by a mouse actin-binding protein, α actinin 2. J. Mol. Endocrinol. 32, 481–496 (2004).

    CAS  PubMed  Google Scholar 

  33. Yoo, Y., Wu, X. & Guan, J. L. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J. Biol. Chem. 282, 7616–7623 (2007).

    CAS  PubMed  Google Scholar 

  34. Wu, X. et al. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat. Cell Biol. 8, 756–763 (2006).

    PubMed  Google Scholar 

  35. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    CAS  PubMed  Google Scholar 

  36. Kukalev, A., Nord, Y., Palmberg, C., Bergman, T. & Percipalle, P. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat. Struct. Mol. Biol. 12, 238–244 (2005).

    CAS  PubMed  Google Scholar 

  37. Obrdlik, A. et al. The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol. Cell Biol. 28, 6342–6357 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Qi, T. et al. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J. Biol. Chem. 286, 15171–15181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Blessing, C. A., Ugrinova, G. T. & Goodson, H. V. Actin and ARPs: action in the nucleus. Trends Cell Biol. 14, 435–442 (2004).

    CAS  PubMed  Google Scholar 

  40. Grummt, I. Actin and myosin as transcription factors. Curr. Opin. Genet. Dev. 16, 191–196 (2006).

    CAS  PubMed  Google Scholar 

  41. Hu, P., Wu, S. & Hernandez, N. A role for β-actin in RNA polymerase III transcription. Genes Dev. 18, 3010–3015 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hofmann, W. A. et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 6, 1094–1101 (2004).

    CAS  PubMed  Google Scholar 

  43. Percipalle, P. et al. Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes. J. Cell Biol. 153, 229–236 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Percipalle, P. et al. Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res. 30, 1725–1734 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Percipalle, P. et al. An actin–ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc. Natl Acad. Sci. USA 100, 6475–6480 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sjolinder, M. et al. The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev. 19, 1871–1884 (2005).

    PubMed  PubMed Central  Google Scholar 

  47. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Haller, K., Rambaldi, I., Daniels, E. & Featherstone, M. Subcellular localization of multiple PREP2 isoforms is regulated by actin, tubulin and nuclear export. J. Biol. Chem. 279, 49384–49394 (2004).

    CAS  PubMed  Google Scholar 

  49. Favot, L., Hall, S. M., Haworth, S. G. & Kemp, P. R. Cytoplasmic YY1 is associated with increased smooth muscle-specific gene expression: implications for neonatal pulmonary hypertension. Am. J. Pathol. 167, 1497–1509 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316, 1749–1752 (2007).

    CAS  PubMed  Google Scholar 

  51. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  PubMed  Google Scholar 

  52. Luxton, G. W., Gomes, E. R., Folker, E. S., Vintinner, E. & Gundersen, G. G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329, 956–959 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Razafsky, D. & Hodzic, D. Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections. J. Cell Biol. 186, 461–472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shumaker, D. K., Kuczmarski, E. R. & Goldman, R. D. The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr. Opin. Cell Biol. 15, 358–366 (2003).

    CAS  PubMed  Google Scholar 

  55. Holaska, J. M. & Wilson, K. L. An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing and nuclear architecture. Biochemistry 46, 8897–8908 (2007).

    CAS  PubMed  Google Scholar 

  56. Coluccio, L. M. in Proteins And Cell Regulation Vol. 7 (ed. Coluccio, L. M.) 95–124 (Springer Netherlands, 2008).

    Google Scholar 

  57. Hofmann, W. A., Johnson, T., Klapczynski, M., Fan, J. L. & de Lanerolle, P. From transcription to transport: emerging roles for nuclear myosin I. Biochem. Cell Biol. 84, 418–426 (2006).

    CAS  PubMed  Google Scholar 

  58. Hokanson, D. E. & Ostap, E. M. Myo1c binds tightly and specifically to phosphatidylinositol-4,5-bisphosphate and inositol-1,4,5-trisphosphate. Proc. Natl Acad. Sci USA 103, 3118–3123 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fomproix, N. & Percipalle, P. An actin-myosin complex on actively transcribing genes. Exp. Cell Res. 294, 140–148 (2004).

    CAS  PubMed  Google Scholar 

  60. Ye, J., Zhao, J., Hoffmann-Rohrer, U. & Grummt, I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 22, 322–330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Philimonenko, V. V. et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6, 1165–1172 (2004).

    CAS  PubMed  Google Scholar 

  62. Hofmann, W. A. et al. Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II. J. Cell Biochem. 99, 1001–1009 (2006).

    CAS  PubMed  Google Scholar 

  63. Obrdlik, A. et al. Nuclear myosin 1 is in complex with mature rRNA transcripts and associates with the nuclear pore basket. FASEB J 24, 146–157 (2010).

    PubMed  Google Scholar 

  64. Kysela, K. et al. Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem. Cell Biol. 124, 347–358 (2005).

    CAS  PubMed  Google Scholar 

  65. Philimonenko, V. V., Janacek, J., Harata, M. & Hozak, P. Transcription-dependent rearrangements of actin and nuclear myosin I in the nucleolus. Histochem. Cell Biol. 134, 243–249 (2010).

    CAS  PubMed  Google Scholar 

  66. Raska, I., Shaw, P. J. & Cmarko, D. Structure and function of the nucleolus in the spotlight. Curr. Opin. Cell Biol. 18, 325–334 (2006).

    CAS  PubMed  Google Scholar 

  67. Spector, D. L. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 72, 573–608 (2003).

    CAS  PubMed  Google Scholar 

  68. Chuang, C. H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825–831 (2006).

    CAS  PubMed  Google Scholar 

  69. Hu, Q. et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl Acad. Sci. USA 105, 19199–19204 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dundr, M. et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol. 179, 1095–1103 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mehta, I. S., Amira, M., Harvey, A. J. & Bridger, J. M. Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol. 11, R5 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. Percipalle, P. et al. The chromatin remodelling complex WSTF–SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO Rep. 7, 525–530 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Smukste, I., Bhalala, O., Persico, M. & Stockwell, B. R. Using small molecules to overcome drug resistance induced by a viral oncogene. Cancer Cell 9, 133–146 (2006).

    CAS  PubMed  Google Scholar 

  74. Percipalle, P. & Farrants, A. K. Chromatin remodelling and transcription: be-WICHed by nuclear myosin 1. Curr. Opin. Cell Biol. 18, 267–274 (2006).

    CAS  PubMed  Google Scholar 

  75. Rodgers, B. D. Insulin-like growth factor-I downregulates embryonic myosin heavy chain (eMyHC) in myoblast nuclei. Growth Horm. IGF Res. 15, 377–383 (2005).

    CAS  PubMed  Google Scholar 

  76. Pranchevicius, M. C. et al. Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. Cell Motil. Cytoskeleton 65, 441–456 (2008).

    CAS  PubMed  Google Scholar 

  77. Lindsay, A. J. & McCaffrey, M. W. Myosin Vb localises to nucleoli and associates with the RNA polymerase I transcription complex. Cell Motil. Cytoskeleton 66, 1057–1072 (2009).

    CAS  PubMed  Google Scholar 

  78. Vreugde, S. et al. Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol. Cell 23, 749–755 (2006).

    CAS  PubMed  Google Scholar 

  79. Buss, F., Spudich, G. & Kendrick-Jones, J. Myosin VI: cellular functions and motor properties. Annu. Rev. Cell Dev. Biol. 20, 649–676 (2004).

    CAS  PubMed  Google Scholar 

  80. Altman, D., Sweeney, H. L. & Spudich, J. A. The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116, 737–749 (2004).

    CAS  PubMed  Google Scholar 

  81. Cameron, R. S. et al. Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil. Cytoskeleton 64, 19–48 (2007).

    CAS  PubMed  Google Scholar 

  82. Salamon, M. et al. Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J. Mol. Biol. 326, 137–149 (2003).

    CAS  PubMed  Google Scholar 

  83. Ajima, R. et al. Deficiency of Myo18B in mice results in embryonic lethality with cardiac myofibrillar aberrations. Genes Cells 13, 987–999 (2008).

    CAS  PubMed  Google Scholar 

  84. Ajima, R. et al. HOMER2 binds MYO18B and enhances its activity to suppress anchorage independent growth. Biochem. Biophys. Res. Commun. 356, 851–856 (2007).

    CAS  PubMed  Google Scholar 

  85. Bleeker, F. E. et al. Mutational profiling of cancer candidate genes in glioblastoma, melanoma and pancreatic carcinoma reveals a snapshot of their genomic landscapes. Hum. Mutat. 30, E451–459 (2009).

    PubMed  Google Scholar 

  86. Skarp, K. P. & Vartiainen, M. K. Actin on DNA—an ancient and dynamic relationship. Cytoskeleton (Hoboken) 67, 487–495 (2010).

    CAS  Google Scholar 

  87. Goodson, H. V. & Hawse, W. F. Molecular evolution of the actin family. J. Cell Sci. 115, 2619–2622 (2002).

    CAS  PubMed  Google Scholar 

  88. Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118 (2005).

    CAS  PubMed  Google Scholar 

  89. Hofmann, W. A., Richards, T. A. & de Lanerolle, P. Ancient animal ancestry for nuclear myosin. J. Cell Sci. 122, 636–643 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rodrigues, M. A., Gomes, D. A., Andrade, V. A., Leite, M. F. & Nathanson, M. H. Insulin induces calcium signals in the nucleus of rat hepatocytes. Hepatology 48, 1621–1631 (2008).

    CAS  PubMed  Google Scholar 

  91. Bootman, M. D., Fearnley, C., Smyrnias, I., MacDonald, F. & Roderick, H. L. An update on nuclear calcium signalling. J. Cell Sci. 122, 2337–2350 (2009).

    CAS  PubMed  Google Scholar 

  92. Li, Q. & Sarna, S. K. Nuclear myosin II regulates the assembly of preinitiation complex for ICAM-1 gene transcription. Gastroenterology 137, 1051–1060.e3 (2009).

    CAS  PubMed  Google Scholar 

  93. Mortier, E. et al. Nuclear speckles and nucleoli targeting by PIP2–PDZ domain interactions. EMBO J. 24, 2556–2565 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Boronenkov, I. V., Loijens, J. C., Umeda, M. & Anderson, R. A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9, 3547–3560 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Osborne, S. L., Thomas, C. L., Gschmeissner, S. & Schiavo, G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114, 2501–2511 (2001).

    CAS  PubMed  Google Scholar 

  96. Jung E. J., Liu, G., Zhou, W., Chen, X. Myosin VI is a mediator of the p53-dependent cell survival pathway. Mol. Cell Biol. 26, 2175–2186 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Taylor M. D. et al. Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci. Transl. Med. 2, 37ra44 (2010).10.1126/scitranslmed.3000813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by a grant from the National Institutes of Health (R01GM080587) to P. de L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primal de Lanerolle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lanerolle, P., Serebryannyy, L. Nuclear actin and myosins: Life without filaments. Nat Cell Biol 13, 1282–1288 (2011). https://doi.org/10.1038/ncb2364

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2364

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing