Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size

Abstract

Networks of epithelial and endothelial tubes are essential for the function of organs such as the lung, kidney and vascular system. The sizes and shapes of these tubes are highly regulated to match their individual functions. Defects in tube size can cause debilitating diseases such as polycystic kidney disease and ischaemia1,2. It is therefore critical to understand how tube dimensions are regulated. Here we identify the tyrosine kinase Src as an instructive regulator of epithelial-tube length in the Drosophila tracheal system. Loss-of-function Src42 mutations shorten tracheal tubes, whereas Src42 overexpression elongates them. Surprisingly, Src42 acts distinctly from known tube-size pathways and regulates both the amount of apical surface growth and, with the conserved formin dDaam, the direction of growth. Quantitative three-dimensional image analysis reveals that Src42- and dDaam-mutant tracheal cells expand more in the circumferential than the axial dimension, resulting in tubes that are shorter in length—but larger in diameter—than wild-type tubes. Thus, Src42 and dDaam control tube dimensions by regulating the direction of anisotropic growth, a mechanism that has not previously been described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Src42 acts autonomously to control tracheal tube length.
Figure 2: Src42 acts independently of the aECM-based tube-size-control pathway.
Figure 3: Src42 is required for orienting anisotropic apical surface expansion along the longitudinal axis of tracheal tubes.
Figure 4: dDaam is required for tracheal-tube elongation.
Figure 5: dDaam functions with Src42 to control tube size.

Similar content being viewed by others

References

  1. Harris, P. C. & Torres, V. E. Polycystic kidney disease. Annu. Rev. Med. 60, 321–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Requena, L. & Sangueza, O. P. Cutaneous vascular anomalies. Part I. Hamartomas, malformations, and dilation of preexisting vessels. J. Am. Acad. Dermatol. 37, 523–549; quiz 549-552 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Beitel, G. J. & Krasnow, M. A. Genetic control of epithelial tube size in the Drosophila tracheal system. Development 127, 3271–3282 (2000).

    CAS  PubMed  Google Scholar 

  4. Samakovlis, C. et al. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122, 1395–1407 (1996).

    CAS  PubMed  Google Scholar 

  5. Laprise, P. et al. Epithelial polarity proteins regulate Drosophila tracheal tube size in parallel to the luminal matrix pathway. Curr. Biol. 20, 55–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, V. M., Schulte, J., Hirschi, A., Tepass, U. & Beitel, G. J. Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J. Cell Biol. 164, 313–323 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chung, S. et al. Serrano (sano) functions with the planar cell polarity genes to control tracheal tube length. PLoS Genet. 5, e1000746 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tonning, A. et al. A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. Dev. Cell 9, 423–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Moussian, B. et al. Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133, 163–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Araujo, S. J., Aslam, H., Tear, G. & Casanova, J. mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development—analysis of its role in Drosophila tracheal morphogenesis. Dev. Biol. 288, 179–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Luschnig, S., Batz, T., Armbruster, K. & Krasnow, M. A. Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr. Biol. 16, 186–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, S. et al. Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Curr. Biol. 16, 180–185 (2006).

    Article  PubMed  Google Scholar 

  13. Paul, S. M., Ternet, M., Salvaterra, P. M. & Beitel, G. J. The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130, 4963–4974 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Behr, M., Riedel, D. & Schuh, R. The claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. Dev. Cell 5, 611–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Nelson, K. S., Furuse, M. & Beitel, G. J. The Drosophila Claudin Kune-kune is required for septate junction organization and tracheal tube size control. Genetics 185, 831–839 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paul, S. M., Palladino, M. J. & Beitel, G. J. A pump-independent function of the Na, K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134, 147–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev. Biol. 13, 513–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Marx, M., Warren, S. L. & Madri, J. A. pp60 (c-src) modulates microvascular endothelial phenotype and in vitro angiogenesis. Exp. Mol. Pathol. 70, 201–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Sweeney, W. E. Jr, von Vigier, R. O., Frost, P. & Avner, E. D. Src inhibition ameliorates polycystic kidney disease. J. Am. Soc. Nephrol. 19, 1331–1341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwartzberg, P. L. et al. Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src−/− mutant mice. Genes Dev. 11, 2835–2844 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaplan, K. B., Swedlow, J. R., Morgan, D. O. & Varmus, H. E. c-Src enhances the spreading of src−/− fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev. 9, 1505–1517 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Pedraza, L. G., Stewart, R. A., Li, D. M. & Xu, T. Drosophila Src-family kinases function with Csk to regulate cell proliferation and apoptosis. Oncogene 23, 4754–4762 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Shindo, M. et al. Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development 135, 1355–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Shiga, Y., Tanaka-Matakatsu, M. & Hayashi, S. A nuclear GFP/β-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev. Growth Differ. 38, 99–106 (1996).

    Article  CAS  Google Scholar 

  25. Takahashi, M., Takahashi, F., Ui-Tei, K., Kojima, T. & Saigo, K. Requirements of genetic interactions between Src42A, armadillo and shotgun, a gene encoding E-cadherin, for normal development in Drosophila. Development 132, 2547–2559 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Padash-Barmchi, M., Browne, K., Sturgeon, K., Jusiak, B. & Auld, V. J. Control of Gliotactin localization and levels by tyrosine phosphorylation and endocytosis is necessary for survival of polarized epithelia. J. Cell Sci. 123, 4052–4062 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. LeClaire, L. L. 3rd, Baumgartner, M., Iwasa, J. H., Mullins, R. D. & Barber, D. L. Phosphorylation of the Arp2/3 complex is necessary to nucleate actin filaments. J. Cell Biol. 182, 647–654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aspenstrom, P., Richnau, N. & Johansson, A. S. The diaphanous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics. Exp. Cell Res. 312, 2180–2194 (2006).

    Article  PubMed  Google Scholar 

  29. Matusek, T. et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 133, 957–966 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Matusek, T. et al. Formin proteins of the DAAM subfamily play a role during axon growth. J. Neurosci. 28, 13310–13319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tominaga, T. et al. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5, 13–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Young, K. G. & Copeland, J. W. Formins in cell signaling. Biochim. Biophys. Acta 1803, 183–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Segalen, M. & Bellaiche, Y. Cell division orientation and planar cell polarity pathways. Semin. Cell Dev. Biol. 20, 972–977 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Ang, S. F., Zhao, Z. S., Lim, L. & Manser, E. DAAM1 is a formin required for centrosome re-orientation during cell migration. PLoS One 5, e13064 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. O’Reilly, A. M. et al. Csk differentially regulates Src64 during distinct morphological events in Drosophila germ cells. Development 133, 2627–2638 (2006).

    Article  PubMed  Google Scholar 

  36. Ward, R. E. t., Lamb, R. S. & Fehon, R. G. A conserved functional domain of Drosophila coracle is required for localization at the septate junction and has membrane-organizing activity. J. Cell Biol. 140, 1463–1473 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image Processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).

    Google Scholar 

  38. Maurer, C. R., Qi, R. & Raghavan, V. A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Machine Intelligence 25, 265–270 (2003).

    Article  Google Scholar 

  39. Lorensen, W. E. & Cline, H. E. SIGGRAPH ’87: Proceedings of the 14th annual conference on computer graphics and interactive techniques 163–169 (ACM, 1987).

    Book  Google Scholar 

  40. Vincent, L. & Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Machine Intelligence 13, 583–598 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Zeeb and E. Lammert for sharing unpublished results and comments on the manuscript, R. Carthew, S. Hilgenfeldt and A. Dudley for discussions, Bill Russin and the Northwestern Biological Imaging Facility for imaging support, S. Hayashi, A. O’Reilly, T. Xu, the Bloomington Stock Center and the Developmental Studies Hybridoma Bank for fly stocks and reagents, M. Singh for technical advice and R. Robbins, T. Helenius and T. Krupinski for comments on the manuscript. This work was supported by a predoctoral fellowship from the National Institutes of Health (NIH) Cellular and Molecular Basis of Disease training grant (T32 GM008061 to K.S.N.), a Malkin Scholar Award (to K.S.N.), an Achievement Rewards for College Scientists (ARCS) Award (to K.S.N.), a grant from the Northwestern University Alumni Association (to G.J.B.), NIH grant P50 GM 071508, principal investigator D. Botstein (Z.K. and M.K.), and Hungarian Scientific Research Fund (OTKA) grant K 82039 (to J.M.).

Author information

Authors and Affiliations

Authors

Contributions

K.S.N. carried out all experiments, Z.K. generated and analysed individual dorsal-trunk cell quantifications, I.M. generated the UAS–Flag–dDaam construct and the dDaam antibody, K.S.N., Z.K., M.K. and G.J.B. designed and interpreted the experiments and K.S.N., Z.K., J.M., M.K. and G.J.B. wrote the paper.

Corresponding author

Correspondence to Greg J. Beitel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1988 kb)

Supplementary Table 1

Supplementary Information (XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, K., Khan, Z., Molnár, I. et al. Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size. Nat Cell Biol 14, 518–525 (2012). https://doi.org/10.1038/ncb2467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing