Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning

Abstract

Clathrin-mediated endocytosis occurs at multiple independent import sites on the plasma membrane, but how these positions are selected and how different cargo is simultaneously recognized is obscure. FCHO1 and FCHO2 are early-arriving proteins at surface clathrin assemblies and are speculated to act as compulsory coat nucleators, preceding the core clathrin adaptor AP-2. Here, we show that the μ-homology domain of FCHO1/2 represents an endocytic interaction hub. Translational silencing of fcho1 in zebrafish embryos causes strong dorsoventral patterning defects analogous to Bmp signal failure. The Fcho1 μ-homology domain interacts with the Bmp receptor Alk8, uncovering an endocytic component that positively modulates Bmp signal transmission. Still, the fcho1 morphant phenotype is distinct from severe embryonic defects apparent when AP-2 is depleted. Our data thus challenge the primacy of FCHO1/2 in coat initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding properties of FCHO1.
Figure 2: The μHD interaction hub.
Figure 3: Developmental defects of FCHO1 overexpression.
Figure 4: Fcho1 participates in early embryonic development.
Figure 5: The Fcho1–Alk8 association.
Figure 6: Fcho1 operates in a genetic Bmp-to-Smad signalling pathway.
Figure 7: AP-2 morphants are unlike fcho1/2 double morphants.
Figure 8: AP-2–clathrin coats persist in FCHO1 and FCHO2 siRNA-treated HeLa and BS-C-1 cells.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  2. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).

    Article  CAS  Google Scholar 

  3. Kirchhausen, T. Imaging endocytic clathrin structures in living cells. Trends Cell Biol. 19, 596–605 (2009).

    Article  CAS  Google Scholar 

  4. Kelly, B. T. & Owen, D. J. Endocytic sorting of transmembrane protein cargo. Curr. Opin. Cell Biol. 23, 404–412 (2011).

    Article  CAS  Google Scholar 

  5. Reider, A. & Wendland, B. Endocytic adaptors—social networking at the plasma membrane. J. Cell Sci. 124, 1613–1622 (2011).

    Article  CAS  Google Scholar 

  6. Traub, L. M. Tickets to ride: Selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10, 583–596 (2009).

    Article  CAS  Google Scholar 

  7. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survery of the molecular dynamics of mammalian clathrin mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    Article  CAS  Google Scholar 

  8. Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature 448, 883–888 (2007).

    Article  CAS  Google Scholar 

  9. Boucrot, E., Saffarian, S., Massol, R., Kirchhausen, T. & Ehrlich, M. Role of lipids and actin in the formation of clathrin-coated pits. Exp. Cell Res. 312, 4036–4048 (2006).

    Article  CAS  Google Scholar 

  10. Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4, 5-bisphosphate. Proc. Natl Acad. Sci. USA 104, 3793–3798 (2007).

    Article  CAS  Google Scholar 

  11. Jackson, L. P. et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141, 1220–1229 (2010).

    Article  CAS  Google Scholar 

  12. Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010).

    Article  CAS  Google Scholar 

  13. Little, S. C. & Mullins, M. C. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat. Cell Biol. 11, 637–643 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mintzer, K. A. et al. Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 128, 859–869 (2001).

    CAS  Google Scholar 

  15. Reider, A. et al. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J. 28, 3103–3016 (2009).

    Article  CAS  Google Scholar 

  16. Katoh, M. Identification and characterization of human FCHO2 and mouse Fcho2 genes in silico. Int. J. Mol Med. 14, 327–331 (2004).

    CAS  PubMed  Google Scholar 

  17. Stimpson, H. E., Toret, C. P., Cheng, A. T., Pauly, B. S. & Drubin, D. G. Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol. Biol. Cell 20, 4640–4651 (2009).

    Article  CAS  Google Scholar 

  18. Boettner, D. R. et al. The F-BAR protein Syp1 negatively regulates WASp-Arp2/3 complex activity during endocytic patch formation. Curr. Biol. 19, 1979–1987 (2009).

    Article  CAS  Google Scholar 

  19. Uezu, A. et al. Characterization of the EFC/F-BAR domain protein, FCHO2. Genes Cells 16, 868–878 (2011).

    Article  CAS  Google Scholar 

  20. Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136, 1110–1121 (2009).

    Article  CAS  Google Scholar 

  21. Henne, W. M. et al. Structure and analysis of FCHo2 F-BAR domain: A dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839–852 (2007).

    Article  CAS  Google Scholar 

  22. Edeling, M. A., Smith, C. & Owen, D. Life of a clathrin coat: Insights from clathrin and AP structures. Nat. Rev. Mol. Cell Biol. 7, 32–44 (2006).

    Article  CAS  Google Scholar 

  23. Edeling, M. A. et al. Molecular switches involving the AP-2 β2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell 10, 329–342 (2006).

    Article  CAS  Google Scholar 

  24. Schmid, E. M. et al. Role of the AP2 β-appendage hub in recruiting partners for clathrin coated vesicle assembly. PLoS Biol. 4, e262 (2006).

    Article  Google Scholar 

  25. Mishra, S. K. et al. Dual-engagement regulation of protein interactions with the AP-2 adaptor α appendage. J. Biol. Chem. 279, 46191–46203 (2004).

    Article  CAS  Google Scholar 

  26. Praefcke, G. J. et al. Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 23, 4371–4383 (2004).

    Article  CAS  Google Scholar 

  27. Hinrichsen, L., Harborth, J., Andrees, L., Weber, K. & Ungewickell, E. J. Effect of clathrin heavy chain- and α-adaptin specific small interfering RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J. Biol. Chem. 278, 45160–45170 (2003).

    Article  CAS  Google Scholar 

  28. Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909–918 (2003).

    Article  CAS  Google Scholar 

  29. Uezu, A. et al. SGIP1 α is an endocytic protein that directly interacts with phospholipids and Eps15. J. Biol. Chem. 282, 26481–26489 (2007).

    Article  CAS  Google Scholar 

  30. Yamabhai, M. et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem. 273, 31401–31407 (1998).

    Article  CAS  Google Scholar 

  31. Koh, T. W. et al. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J. Cell Biol. 178, 309–322 (2007).

    Article  CAS  Google Scholar 

  32. Sengar, A. S., Wang, W., Bishay, J., Cohen, S. & Egan, S. E. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 18, 1159–1171 (1999).

    Article  CAS  Google Scholar 

  33. Imai, Y. & Talbot, W. S. Morpholino phenocopies of the bmp2b/swirl and bmp7/snailhouse mutations. Genesis 30, 160–163 (2001).

    Article  CAS  Google Scholar 

  34. Mullins, M. C. et al. Genes establishing dorsoventral pattern formationin the zebrafish embryo: The ventral specifying genes. Development 123, 81–93 (1996).

    CAS  Google Scholar 

  35. Schier, A. F. & Talbot, W. S. Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 39, 561–613 (2005).

    CAS  PubMed  Google Scholar 

  36. Tucker, J. A., Mintzer, K. A. & Mullins, M. C. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev. Cell 14, 108–119 (2008).

    Article  CAS  Google Scholar 

  37. Robu, M. E. et al. p53 activation by knockdown technologies. PLoS Genet. 3, e78 (2007).

    Article  Google Scholar 

  38. Schulte-Merker, S., Lee, K. J., McMahon, A. P. & Hammerschmidt, M. The zebrafish organizer requires chordino. Nature 387, 862–863 (1997).

    Article  CAS  Google Scholar 

  39. von der Hardt, S. et al. The Bmp gradient of the zebrafish gastrula guidesmigrating lateral cells by regulating cell–cell adhesion. Curr. Biol. 17, 475–487 (2007).

    Article  CAS  Google Scholar 

  40. Bauer, H., Lele, Z., Rauch, G. J., Geisler, R. & Hammerschmidt, M. The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development 128, 849–858 (2001).

    CAS  Google Scholar 

  41. Payne, T. L., Postlethwait, J. H. & Yelick, P. C. Functional characterization and genetic mapping of alk8. Mech. Dev. 100, 275–289 (2001).

    Article  CAS  Google Scholar 

  42. Solnica-Krezel, L. Gastrulation in zebrafish—all just about adhesion? Curr. Opin. Genet. Dev. 16, 433–441 (2006).

    Article  CAS  Google Scholar 

  43. Borner, G. H. et al. CVAK104 is a novel regulator of clathrin-mediated SNARE sorting. Traffic 8, 893–903 (2007).

    Article  CAS  Google Scholar 

  44. Tsang, M. et al. A role for MKP3 in axial patterning of the zebrafish embryo. Development 131, 2769–2779 (2004).

    Article  CAS  Google Scholar 

  45. Yu, S. R. et al. Fgf8 morphogen gradient forms by a source–sink mechanism with freely diffusing molecules. Nature 461, 533–536 (2009).

    Article  CAS  Google Scholar 

  46. Scholpp, S. & Brand, M. Endocytosis controls spreading and effective signaling range of Fgf8 protein. Curr. Biol 14, 1834–1841 (2004).

    Article  CAS  Google Scholar 

  47. Molina, G. A., Watkins, S. C. & Tsang, M. Generation of FGF reporter transgenic zebrafish and their utility in chemical screens. BMC Dev. Biol. 7, 62 (2007).

    Article  Google Scholar 

  48. Furthauer, M., Van Celst, J., Thisse, C. & Thisse, B. Fgf signalling controls the dorsoventral patterning of the zebrafish embryo. Development 131, 2853–2864 (2004).

    Article  Google Scholar 

  49. Sorkin, A. & von Zastrow, M. Endocytosis and signalling: Intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10, 609–922 (2009).

    Article  CAS  Google Scholar 

  50. Belenkaya, T. Y. et al. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119, 231–244 (2004).

    Article  CAS  Google Scholar 

  51. O’Connor-Giles, K. M., Ho, L. L. & Ganetzky, B. Nervous wreck interacts with thickveins and the endocytic machinery to attenuate retrograde BMP signaling during synaptic growth. Neuron 58, 507–518 (2008).

    Article  Google Scholar 

  52. Wang, W. & Struhl, G. Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila. Development 132, 2883–2894 (2005).

    Article  CAS  Google Scholar 

  53. Hartung, A. et al. Different routes of bone morphogenic protein (BMP) receptor endocytosis influence BMP signaling. Mol. Cell Biol. 26, 7791–7805 (2006).

    Article  CAS  Google Scholar 

  54. Heining, E., Bhushan, R., Paarmann, P., Henis, Y. I. & Knaus, P. Spatial segregation of BMP/Smad signaling affects osteoblast differentiation in C2C12 cells. PLoS One 6, e25163 (2011).

    Article  CAS  Google Scholar 

  55. Zhou, Y. et al. Receptor internalization-independent activation of Smad2 in activin signaling. Mol. Endocrinol. 18, 1818–1826 (2004).

    Article  CAS  Google Scholar 

  56. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFb receptor. Cell 95, 779–791 (1998).

    Article  CAS  Google Scholar 

  57. Lin, H. K., Bergmann, S. & Pandolfi, P. P. Cytoplasmic PML function in TGF-β signalling. Nature 431, 205–211 (2004).

    Article  CAS  Google Scholar 

  58. Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F. & Wrana, J. L. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat. Cell Biol. 5, 410–421 (2003).

    Article  CAS  Google Scholar 

  59. Hayes, S., Chawla, A. & Corvera, S. TGF β receptor internalization into EEA1-enriched early endosomes: Role in signaling to Smad2. J. Cell Biol. 158, 1239–1249 (2002).

    Article  CAS  Google Scholar 

  60. Shi, W. et al. Endofin acts as a Smad anchor for receptor activation in BMP signaling. J. Cell Sci. 120, 1216–1224 (2007).

    Article  CAS  Google Scholar 

  61. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  62. Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625 (2005).

    Article  CAS  Google Scholar 

  63. Jullien, J. & Gurdon, J. Morphogen gradient interpretation by a regulated trafficking step during ligand-receptor transduction. Genes Dev. 19, 2682–2694 (2005).

    Article  CAS  Google Scholar 

  64. Mitsunari, T. et al. Clathrin adaptor AP-2 is essential for early embryonal development. Mol. Cell. Biol. 25, 9318–9323 (2005).

    Article  CAS  Google Scholar 

  65. Hart, N. H. & Collins, G. C. An electron-microscope and freeze-fracture study of the egg cortex of Brachydanio rerio. Cell Tissue Res. 265, 317–328 (1991).

    Article  CAS  Google Scholar 

  66. Feng, B., Schwarz, H. & Jesuthasan, S. Furrow-specific endocytosis during cytokinesis of zebrafish blastomeres. Exp. Cell Res. 279, 14–20 (2002).

    Article  CAS  Google Scholar 

  67. von Kleist, L. et al. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell 146, 471–484 (2011).

    Article  CAS  Google Scholar 

  68. Thieman, J. R. et al. Clathrin regulates the association of PIPKI γ661 with the AP-2 adaptor β2 appendage. J. Biol. Chem. 284, 13924–13939 (2009).

    Article  CAS  Google Scholar 

  69. Edeling, M. A. et al. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development. PLoS One 4, e8150 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to our many colleagues for providing reagents that were essential for this study. Supported by National Institutes of Health grants R01 HL088016 (M.T.), R01 GM60979 (B.W.) and R01 DK53249 (L.M.T.).

Author information

Authors and Affiliations

Authors

Contributions

P.K.U., S.S., J.R.T., S.C. and L.M.T. designed, carried out and interpreted various experiments. B.W. and M.T. provided intellectual input, contributed to experimental design and advised on data interpretation. L.M.T. conceived and directed the overall project and wrote the manuscript with comments from all the authors.

Corresponding author

Correspondence to Linton M. Traub.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umasankar, P., Sanker, S., Thieman, J. et al. Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning. Nat Cell Biol 14, 488–501 (2012). https://doi.org/10.1038/ncb2473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing