Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ER network formation requires a balance of the dynamin-like GTPase Sey1p and the Lunapark family member Lnp1p

Abstract

Although studies on endoplasmic reticulum (ER) structure and dynamics have focused on the ER tubule-forming proteins (reticulons and DP1/Yop1p) and the tubule fusion protein atlastin, nothing is known about the proteins and processes that act to counterbalance this machinery. Here we show that Lnp1p, a member of the conserved Lunapark family, plays a role in ER network formation. Lnp1p binds to the reticulons and Yop1p and resides at ER tubule junctions in both yeast and mammalian cells. In the yeast Saccharomyces cerevisiae, the interaction of Lnp1p with the reticulon protein, Rtn1p, and the localization of Lnp1p to ER junctions are regulated by Sey1p, the yeast orthologue of atlastin. We propose that Lnp1p and Sey1p act antagonistically to balance polygonal network formation. In support of this proposal, we show that the collapsed, densely reticulated ER network in lnp1 Δ cells is partially restored when the GTPase activity of Sey1p is abrogated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cortical ER morphology is abnormal in the lnp1 mutant.
Figure 2: Lnp1p resides at three-way junctions.
Figure 3: The cortical ER is highly reticulated in the lnp1 Δ mutant.
Figure 4: Lnp1p acts synergistically with the reticulons and Yop1p, but antagonistically with Sey1p.
Figure 5: The GTPase activity of Sey1p retains Lnp1p at three-way junctions.
Figure 6: Sey1p regulates the interaction of Lnp1p with Rtn1p.
Figure 7: The sey1 Δ mutant exhibits a delay in cortical ER fusion that is not suppressed by the loss of Lnp1p.
Figure 8: The sey1 Δ mutant exhibits a defect in nuclear fusion that is not suppressed by the loss of Lnp1p.

Similar content being viewed by others

References

  1. Du, Y., Ferro-Novick, S. & Novick, P. Dynamics and inheritance of the endoplasmic reticulum. J. Cell Sci. 117, 2871–2878 (2004).

    Article  CAS  Google Scholar 

  2. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).

    Article  CAS  Google Scholar 

  3. Lee, C. & Chen, L. B. Dynamic behavior of endoplasmic reticulum in living cells. Cell 54, 37–46 (1988).

    Article  CAS  Google Scholar 

  4. De Craene, J. O. et al. Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol. Biol. Cell 17, 3009–3020 (2006).

    Article  CAS  Google Scholar 

  5. Hu, J. et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247–1250 (2008).

    Article  CAS  Google Scholar 

  6. Hu, J. et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138, 549–561 (2009).

    Article  CAS  Google Scholar 

  7. West, M., Zurek, N., Hoenger, A. & Voeltz, G. K. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell. Biol. 193, 333–346 (2011).

    Article  CAS  Google Scholar 

  8. Schuck, S., Prinz, W. A., Thorn, K. S., Voss, C. & Walter, P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell. Biol. 187, 525–536 (2009).

    Article  CAS  Google Scholar 

  9. Orso, G. et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460, 978–983 (2009).

    Article  CAS  Google Scholar 

  10. Park, S. H., Zhu, P. P., Parker, R. L. & Blackstone, C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J. Clin. Invest. 120, 1097–1110 (2010).

    Article  CAS  Google Scholar 

  11. Beetz, C. et al. REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131, 1078–1086 (2008).

    Article  Google Scholar 

  12. Salinas, S., Proukakis, C., Crosby, A. & Warner, T. T. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet. Neurol. 7, 1127–1138 (2008).

    Article  CAS  Google Scholar 

  13. Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405–417 (2003).

    Article  CAS  Google Scholar 

  14. Du, Y., Pypaert, M., Novick, P. & Ferro-Novick, S. Aux1p/Swa2p is required for cortical endoplasmic reticulum inheritance in Saccharomyces cerevisiae. Mol. Biol. Cell 12, 2614–2628 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Estrada, P. et al. Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J. Cell Biol. 163, 1255–1266 (2003).

    Article  CAS  Google Scholar 

  16. Prinz, W. A. et al. Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Biol. 150, 461–474 (2000).

    Article  CAS  Google Scholar 

  17. Shibata, Y. et al. Mechanisms determining the morphology of the peripheral ER. Cell 143, 774–788 (2010).

    Article  CAS  Google Scholar 

  18. Loewen, C. J., Young, B. P., Tavassoli, S. & Levine, T. P. Inheritance of cortical ER in yeast is required for normal septin organization. J. Cell Biol. 179, 467–483 (2007).

    Article  CAS  Google Scholar 

  19. Barrowman, J., Sacher, M. & Ferro-Novick, S. TRAPP stably associates with the Golgi and is required for vesicle docking. EMBO J. 19, 862–869 (2000).

    Article  CAS  Google Scholar 

  20. Grote, E. Cell fusion assays for yeast mating pairs. Methods Mol. Biol. 475, 165–196 (2008).

    Article  Google Scholar 

  21. Moss, T. J., Andreazza, C., Verma, A., Daga, A. & McNew, J. A. Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain. Proc. Natl Acad. Sci. USA 108, 11133–11138 (2011).

    Article  CAS  Google Scholar 

  22. Ghila, L. & Gomez, M. The evolutionarily conserved gene LNP- 1 is required for synaptic vesicle trafficking and synaptic transmission. Eur. J. Neurosci. 27, 621–630 (2008).

    Article  Google Scholar 

  23. Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751–780 (2007).

    Article  CAS  Google Scholar 

  24. Bleazard, W. et al. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298–304 (1999).

    Article  CAS  Google Scholar 

  25. Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrialfusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997).

    Article  CAS  Google Scholar 

  26. Hermann, G. J. et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359–373 (1998).

    Article  CAS  Google Scholar 

  27. Ruohola, H., Kabcenell, A. K. & Ferro-Novick, S. Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: the acceptor Golgi compartment is defective in the sec23 mutant. J. Cell Biol. 107, 1465–1476 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Voeltz (Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, USA) for plasmids. We also thank Y. Jones in the Electron Microscopy Facility in the Department of Cellular and Molecular Medicine at the University of California at San Diego, USA, headed by M. Farquhar, for the preparation of electron microscopy samples, and we acknowledge use of the UCSD Neuroscience Microscopy Facility funded by grant P30 NS047101. This work was supported by a grant from the National Institutes of Health (GM073892) and the Howard Hughes Medical Institute. Salary support for S.C. and S.F-N. was provided by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

S.F-N. and P.N. conceived the idea for the screen. S.F-N., P.N. and S.C. designed the experiments, analysed the data and wrote the manuscript. S.C. performed the research.

Corresponding authors

Correspondence to Peter Novick or Susan Ferro-Novick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2477 kb)

Supplementary Table 1

Supplementary Information (XLSX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Novick, P. & Ferro-Novick, S. ER network formation requires a balance of the dynamin-like GTPase Sey1p and the Lunapark family member Lnp1p. Nat Cell Biol 14, 707–716 (2012). https://doi.org/10.1038/ncb2523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing