Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Auxin regulates aquaporin function to facilitate lateral root emergence

Abstract

Aquaporins are membrane channels that facilitate water movement across cell membranes. In plants, aquaporins contribute to water relations. Here, we establish a new link between aquaporin-dependent tissue hydraulics and auxin-regulated root development in Arabidopsis thaliana. We report that most aquaporin genes are repressed during lateral root formation and by exogenous auxin treatment. Auxin reduces root hydraulic conductivity both at the cell and whole-organ levels. The highly expressed aquaporin PIP2;1 is progressively excluded from the site of the auxin response maximum in lateral root primordia (LRP) whilst being maintained at their base and underlying vascular tissues. Modelling predicts that the positive and negative perturbations of PIP2;1 expression alter water flow into LRP, thereby slowing lateral root emergence (LRE). Consistent with this mechanism, pip2;1 mutants and PIP2;1-overexpressing lines exhibit delayed LRE. We conclude that auxin promotes LRE by regulating the spatial and temporal distribution of aquaporin-dependent root tissue water transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional downregulation of aquaporins during lateral root formation is mediated by auxin.
Figure 2: Auxin reduces aquaporin accumulation and hydraulic conductivity.
Figure 3: PIP2;1 expression oppositely mirrors auxin accumulation during lateral root formation.
Figure 4: Mathematical model of LRE.
Figure 5: LRE is delayed in the pip2;1 mutant and the PIP2;1 overexpressor.
Figure 6: Diagram illustrating the regulation of LRE by PIP2;1.

Similar content being viewed by others

References

  1. Casimiro, I. et al. Dissecting Arabidopsis lateral root development. Trends Plant Sci. 8, 165–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Péret, B., Larrieu, A. & Bennett, M. J. Lateral root emergence: a difficult birth. J. Exp. Bot. 60, 3637–43 (2009).

    Article  PubMed  Google Scholar 

  3. Péret, B. et al. Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 14, 399–408 (2009).

    Article  PubMed  Google Scholar 

  4. Overvoorde, P., Fukaki, H. & Beeckman, T. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2, a001537 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Swarup, K. et al. The auxin influx carrier LAX3 promotes lateral root emergence. Nat. Cell Biol. 10, 946–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Cosgrove, D. J. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance. Int. J. Plant Sci. 154, 10–21 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Boyer, J. S. & Silk, W. K. Hydraulics of plant growth. Funct. Plant Biol. 31, 761–773 (2004).

    Article  PubMed  Google Scholar 

  8. Ehlert, C., Maurel, C., Tardieu, F. & Simonneau, T. Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiol. 150, 1093–104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fricke, W. Biophysical limitation of cell elongation in cereal leaves. Ann. Bot. 90, 157–67 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hukin, D., Doering-Saad, C., Thomas, C. R. & Pritchard, J. Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots. Planta 215, 1047–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Oparka, K. J., Prior, D. A. M. & Wright, K. M. Symplastic communication between primary and developing lateral roots of Arabidopsis thaliana. J. Exp. Bot. 46, 187–197 (1995).

    Article  CAS  Google Scholar 

  12. Gomes, D. et al. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim. Biophys. Acta 1788, 1213–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Danielson, J. A. & Johanson, U. Phylogeny of major intrinsic proteins. Adv. Exp. Med. Biol. 679, 19–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Kaldenhoff, R. et al. Aquaporins and plant water balance. Plant Cell Environ. 31, 658–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Maurel, C., Verdoucq, L., Luu, D. T. & Santoni, V. Plant aquaporins: membrane channels with multiple integrated functions. Annu. Rev. Plant Biol. 59, 595–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Ditengou, F. A. et al. Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 105, 18818–23 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laskowski, M. et al. Root system architecture from coupling cell shape to auxin transport. PLoS Biol. 6, 2721–2735 (2008).

    Article  CAS  Google Scholar 

  18. Lucas, M., Godin, C., Jay-Allemand, C. & Laplaze, L. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J. Exp. Bot. 59, 55–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Richter, G. L., Monshausen, G. B., Krol, A. & Gilroy, S. Mechanical stimuli modulate lateral root organogenesis. Plant Physiol. 151, 1855–66 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malamy, J. E. & Benfey, P. N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33–44 (1997).

    CAS  PubMed  Google Scholar 

  21. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003).

    Article  PubMed  Google Scholar 

  22. Alexandersson, E. et al. Whole gene family expression and drought stress regulation of aquaporins. Plant Mol. Biol. 59, 469–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Monneuse, J. M. et al. Towards the profiling of the Arabidopsis thaliana plasma membrane transportome by targeted proteomics. Proteomics 11, 1789–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Calderon-Villalobos, L. I., Tan, X., Zheng, N. & Estelle, M. Auxin perception–structural insights. Cold Spring Harb. Perspect. Biol. 2, a005546 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Okushima, Y. et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17, 444–63 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okushima, Y., Fukaki, H., Onoda, M., Theologis, A. & Tasaka, M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19, 118–30 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilmoth, J. C. et al. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J. 43, 118–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. De Smet, I. et al. Bimodular auxin response controls organogenesis in Arabidopsis. Proc. Natl Acad. Sci. USA 107, 2705–10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santoni, V., Vinh, J., Pflieger, D., Sommerer, N. & Maurel, C. A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots. Biochem J. 373, 289–96 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Javot, H. et al. Role of a single aquaporin isoform in root water uptake. Plant Cell 15, 509–22 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boursiac, Y. et al. Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J. 56, 207–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Kazama, H. & Katsumi, M. The role of the osmotic potential of the cell in auxin-induced cell elongation. Plant Cell Physiol. 19, 1145 (1978).

    CAS  Google Scholar 

  33. Da Ines, O. et al. Kinetic analyses of plant water relocation using deuterium as tracer-reduced water flux of Arabidopsis pip2 aquaporin knockout mutants. Plant Biol. (Stuttg) 12 (Suppl. 1), 129–39 (2010).

    Article  CAS  Google Scholar 

  34. Laskowski, M., Biller, S., Stanley, K., Kajstura, T. & Prusty, R. Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol. 47, 788–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Wisman, E., Cardon, G. H., Fransz, P. & Saedler, H. The behaviour of the autonomous maize transposable element En/Spm in Arabidopsis thaliana allows efficient mutagenesis. Plant Mol. Biol. 37, 989–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Tissier, A. F. et al. Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11, 1841–52 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).

    Article  PubMed  Google Scholar 

  38. Scholl, R. L., May, S. T. & Ware, D. H. Seed and molecular resources for Arabidopsis. Plant Physiol. 124, 1477–1480 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–43 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Geldner, N. et al. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Postaire, O. et al. A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol. 152, 1418–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Boursiac, Y. et al. Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790–805 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Péret, B. et al. Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol. 144, 1852–62 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme PIEF-GA-2008-220506 (B.P.) and by a Grand Federative Project (Rhizopolis) of the Agropolis Fondation (Montpellier, France) to C.M. We are indebted to H. Scherb (Helmholtz Zentrum München) for his help with statistical analyses. L.R.B., U.V., M.L., D.M.W., J.R.K., O.E.J. and M.J.B. acknowledge the support of the Biotechnology and Biological Sciences Research Council (BBSRC) and Engineering and Physical Sciences Research Council (EPSRC) funding to the Centre for Plant Integrative Biology (CPIB), BBSRC responsive mode grant support to U.V., L.R.B. and M.J.B. and the BBSRC Professorial Research Fellowship funding to D.M.W. and M.J.B. A.R.S. and O.D.I. acknowledge the support of the Deutsche Forschungsgemeinschaft priority programme SPP1108 (SCHA 454/8).

Author information

Authors and Affiliations

Authors

Contributions

B.P., G.L., J.Z., U.V., O.P., D-T.L., O.D.I., I.C., M.L., D.M.W., L.L. and P.N. performed experimental work; B.P., G.L., J.Z., L.R.B., J.R.K., O.E.J., A.R.S., C.M. and M.J.B. performed data analysis; B.P., L.R.B., J.R.K., O.E.J., A.R.S., C.M. and M.J.B. oversaw project planning; B.P., L.R.B., A.R.S., C.M. and M.J.B. wrote the paper.

Corresponding authors

Correspondence to Anton R. Schäffner, Christophe Maurel or Malcolm J. Bennett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1165 kb)

Supplementary Table 1

Supplementary Information (XLS 50 kb)

Supplementary Note

Supplementary Information (PDF 511 kb)

Supplementary Data

Supplementary Information (ZIP 3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Péret, B., Li, G., Zhao, J. et al. Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14, 991–998 (2012). https://doi.org/10.1038/ncb2573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing