Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome

Abstract

Autophagy targets pathogens, damaged organelles and protein aggregates for lysosomal degradation. These ubiquitylated cargoes are recognized by specific autophagy receptors, which recruit LC3-positive membranes to form autophagosomes. Subsequently, autophagosomes fuse with endosomes and lysosomes, thus facilitating degradation of their content; however, the machinery that targets and mediates fusion of these organelles with autophagosomes remains to be established. Here we demonstrate that myosin VI, in concert with its adaptor proteins NDP52, optineurin, T6BP and Tom1, plays a crucial role in autophagy. We identify Tom1 as a myosin VI binding partner on endosomes, and demonstrate that loss of myosin VI and Tom1 reduces autophagosomal delivery of endocytic cargo and causes a block in autophagosome–lysosome fusion. We propose that myosin VI delivers endosomal membranes containing Tom1 to autophagosomes by docking to NDP52, T6BP and optineurin, thereby promoting autophagosome maturation and thus driving fusion with lysosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of myosin VI function leads to an accumulation of autophagosomes.
Figure 2: Myosin VI is required for autophagosomal degradation of huntingtin- and p62-positive protein aggregates.
Figure 3: Myosin VI localizes to LC3-positive autophagosomes.
Figure 4: Myosin VI targets to autophagosomes through the RRL motif in the cargo-binding tail domain.
Figure 5: The myosin VI binding partners T6BP, NDP52 and optineurin co-localize with myosin VI on autophagosomes and are required for autophagosome biogenesis.
Figure 6: Tom1 interacts with myosin VI and is required for myosin VI localization to endosomes.
Figure 7: Loss of Tom1 inhibits the maturation of autophagosomes and their subsequent fusion with lysosomes.
Figure 8: Myosin VI mediates delivery of endocytic cargo to autophagosomes.

Similar content being viewed by others

References

  1. Razi, M., Chan, E. Y. & Tooze, S. A. Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol. 185, 305–321 (2009).

    Article  CAS  Google Scholar 

  2. Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12, 747–757 (2010).

    Article  CAS  Google Scholar 

  3. Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    Article  CAS  Google Scholar 

  4. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  CAS  Google Scholar 

  5. Geng, J., Nair, U., Yasumura-Yorimitsu, K. & Klionsky, D. J. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2257–2269 (2010).

    Article  CAS  Google Scholar 

  6. Weidberg, H., Shvets, E. & Elazar, Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80, 125–156 (2011).

    Article  CAS  Google Scholar 

  7. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    Article  CAS  Google Scholar 

  8. Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature Immunol. 10, 1215–1221 (2009).

    Article  CAS  Google Scholar 

  9. Sahlender, D. A. et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J. Cell Biol. 169, 285–295 (2005).

    Article  CAS  Google Scholar 

  10. Morriswood, B. et al. T6BP and NDP52 are myosin VI binding partners with potential roles in cytokine signalling and cell adhesion. J. Cell Sci. 120, 2574–2585 (2007).

    Article  CAS  Google Scholar 

  11. Buss, F. & Kendrick-Jones, J. How are the cellular functions of myosin VI regulated within the cell?. Biochem. Biophys. Res. Commun. 369, 165–175 (2008).

    Article  CAS  Google Scholar 

  12. Blard, O. et al. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum. Mol. Genet. 16, 555–566 (2007).

    Article  CAS  Google Scholar 

  13. Feuillette, S. et al. Filamin-A and Myosin VI colocalize with fibrillary Tau protein in Alzheimer’s disease and FTDP-17 brains. Brain Res. 1345, 182–189 (2010).

    Article  CAS  Google Scholar 

  14. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    Article  CAS  Google Scholar 

  15. Herman, E.K., Walker, G., van der Giezen, M. & Dacks, J. B. Multivesicular bodies in the enigmatic amoeboflagellate Breviata anathema and the evolution of ESCRT 0. J. Cell Sci. 124, 613–621 (2011).

    Article  CAS  Google Scholar 

  16. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  Google Scholar 

  17. Avraham, K. B. et al. The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat. Genet. 11, 369–375 (1995).

    Article  CAS  Google Scholar 

  18. Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).

    Article  CAS  Google Scholar 

  19. Janen, S. B., Chaachouay, H. & Richter-Landsberg, C. Autophagy is activated by proteasomal inhibition and involved in aggresome clearance in cultured astrocytes. Glia 58, 1766–1774 (2010).

    Article  Google Scholar 

  20. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  21. Penengo, L. et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124, 1183–1195 (2006).

    Article  CAS  Google Scholar 

  22. Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269 (2009).

    Article  CAS  Google Scholar 

  23. Finan, D., Hartman, M. A. & Spudich, J. A. Proteomics approach to study the functions of Drosophila myosin VI through identification of multiple cargo-binding proteins. Proc. Natl Acad. Sci. USA 108, 5566–5571 (2011).

    Article  CAS  Google Scholar 

  24. Wang, T., Liu, N. S., Seet, L. F. & Hong, W. The emerging role of VHS domain-containing Tom1, Tom1L1 and Tom1L2 in membrane trafficking. Traffic 11, 1119–1128 (2010).

    Article  CAS  Google Scholar 

  25. Clague, M. J. & Urbe, S. Ubiquitin: same molecule, different degradation pathways. Cell 143, 682–685 (2010).

    Article  CAS  Google Scholar 

  26. Rusten, T. E. & Stenmark, H. How do ESCRT proteins control autophagy? J. Cell Sci. 122, 2179–2183 (2009).

    Article  CAS  Google Scholar 

  27. Spudich, G. et al. Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2 . Nat. Cell Biol. 9, 176–183 (2007).

    Article  CAS  Google Scholar 

  28. Johansen, T. & Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296 (2011).

    Article  CAS  Google Scholar 

  29. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806–808 (2005).

    Article  CAS  Google Scholar 

  30. Lee, J. Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29, 969–980 (2010).

    Article  CAS  Google Scholar 

  31. Berg, T. O., Fengsrud, M., Stromhaug, P. E., Berg, T. & Seglen, P. O. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J. Biol. Chem. 273, 21883–21892 (1998).

    Article  CAS  Google Scholar 

  32. Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    Article  CAS  Google Scholar 

  33. Bond, L. M., Peden, A. A., Kendrick-Jones, J., Sellers, J. R. & Buss, F. Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane. Mol. Biol. Cell 22, 54–65 (2011).

    Article  CAS  Google Scholar 

  34. Chibalina, M. V., Seaman, M. N., Miller, C. C., Kendrick-Jones, J. & Buss, F. Myosin VI and its interacting protein LMTK2 regulate tubule formation and transport to the endocytic recycling compartment. J. Cell Sci. 120, 4278–4288 (2007).

    Article  CAS  Google Scholar 

  35. Buss, F. et al. The localization of myosin VI at the Golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J. Cell Biol. 143, 1535–1545 (1998).

    Article  CAS  Google Scholar 

  36. Arden, S. D., Puri, C., Au, J. S., Kendrick-Jones, J. & Buss, F. Myosin VI is required for targeted membrane transport during cytokinesis. Mol. Biol. Cell 18, 4750–4761 (2007).

    Article  CAS  Google Scholar 

  37. Jackson, W. T. et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 3, e156 (2005).

    Article  Google Scholar 

  38. Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl Acad. Sci. USA 97, 1589–1594 (2000).

    Article  CAS  Google Scholar 

  39. Chibalina, M. V., Roberts, R. C., Arden, S. D., Kendrick-Jones, J. & Buss, F. Rab8-optineurin-myosin VI: analysis of interactions and functions in the secretory pathway. Methods Enzymol. 438, 11–24 (2008).

    Article  CAS  Google Scholar 

  40. Lawrence, S. P., Bright, N. A., Luzio, J. P. & Bowers, K. The sodium/proton exchanger NHE8 regulates late endosomal morphology and function. Mol. Biol. Cell 21, 3540–3551 (2010).

    Article  CAS  Google Scholar 

  41. Slot, J. W., Geuze, H. J., Gigengack, S., Lienhard, G. E. & James, D. E. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell Biol. 113, 123–135 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Wellcome Trust (F.B., D.A.T. and S.D.A.), the Medical Research Council (J.K-J. and N.A.B.) and a NIH-Oxford-Cambridge Ph.D. studentship (B.J.W.). The CIMR is in receipt of a strategic award from the Wellcome Trust (079895). We thank M. Seaman, F. Randow, L. Wartosch, D. Rubinsztein and D. Owen for critical reading of the manuscript and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.A.T. designed and performed experiments, analysed the data and wrote the manuscript. B.J.W. performed live-cell video microscopy and S.D.A. performed mammalian two-hybrid assays. N.A.B. performed electron microscopy experiments. J.K-J. gave technical advice and edited the manuscript. F.B. conceived the study, designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to David A. Tumbarello or Folma Buss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5651 kb)

Supplementary Table 1

Supplementary Information (XLSX 40 kb)

Supplementary Movie 1

Supplementary Information (MOV 1088 kb)

Supplementary Movie 2

Supplementary Information (MOV 1641 kb)

Supplementary Movie 3

Supplementary Information (MOV 1173 kb)

Supplementary Movie 4

Supplementary Information (MOV 54783 kb)

Supplementary Movie 5

Supplementary Information (MOV 58707 kb)

Supplementary Movie 6

Supplementary Information (MOV 42423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tumbarello, D., Waxse, B., Arden, S. et al. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 14, 1024–1035 (2012). https://doi.org/10.1038/ncb2589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing