Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual role of YAP and TAZ in renewal of the intestinal epithelium

Abstract

The rapidly self-renewing intestinal epithelium represents an exquisite model for stem cell biology. So far, genetic studies in mice have uncovered crucial roles for several signalling pathways in the tissue. Here we show, by using intestine-specific gene transfer (iGT), that Hippo signalling effectors, YAP and TAZ, promote both the proliferation of intestinal stem/progenitor cells and their differentiation into goblet cells. These functions of YAP/TAZ are regulated by the upstream Hippo pathway kinases MST1/2 and LATS1/2. Moreover, we identify TEADs and Klf4 as partner transcription factors of YAP/TAZ in the proliferation and differentiation processes, respectively. These results indicate that Hippo signalling plays a dual role in renewal of the intestinal epithelium through the regulation of two different processes, stem/progenitor cell proliferation and differentiation into goblet cells, using two different types of transcription factor. Moreover, iGT should provide a robust platform to elucidate molecular mechanisms of intestinal epithelium self-renewal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of iGT.
Figure 2: Phenotypic analyses of the tissues transfected by iGT.
Figure 3: YAP/TAZ promote proliferation of stem/progenitor cells.
Figure 4: YAP/TAZ promote differentiation into goblet cells.
Figure 5: Hippo pathway components, LATS1/2, regulate intestinal epithelium renewal.
Figure 6: Hippo pathway components, MST1/2 and TEADs, regulate intestinal epithelium renewal.
Figure 7: Klf4 is a partner transcription factor of YAP/TAZ.
Figure 8: Cooperation of YAP/TAZ and Klf4 in promoting differentiation into goblet cells.

Similar content being viewed by others

References

  1. Fre, S. et al. Epithelial morphogenesis and intestinal cancer: new insights in signaling mechanisms. Adv. Cancer Res. 100, 85–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Scoville, D. H., Sato, T., He, X. C. & Li, L. Current view: intestinal stem cells and signaling. Gastroenterology 134, 849–864 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buczacki, S. J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, B., Tumaneng, K. & Guan, K. L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 13, 877–883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Halder, G. & Johnson, R. L. Hippo signaling: growth control and beyond. Development 138, 9–22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan, D. The Hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat. Cell Biol. 5, 914–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Jia, J., Zhang, W., Wang, B., Trinko, R. & Jiang, J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 17, 2514–2519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pantalacci, S., Tapon, N. & Léopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat. Cell Biol. 5, 921–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, S., Huang, J., Dong, J. & Pan, D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lei, Q. Y. et al. TAZ promotes cell proliferation and epithelial–mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 28, 2426–2436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goulev, Y. et al. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr. Biol. 18, 435–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell 14, 388–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, L. et al. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev. Cell 14, 377–387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schlegelmilch, K. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silvis, M. R. et al. α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci. Signal. 4, ra33 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldie, S. J. et al. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer Res. 72, 3424–3436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106–1118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J. H. et al. A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J. 27, 1231–1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, D. et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc. Natl Acad. Sci. USA 108, E1312–E1320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 24, 2383–2388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hossain, Z. et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc. Natl Acad. Sci. USA 104, 1631–1636 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaneda, Y. et al. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol. Ther. 6, 219–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Batlle, E. et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Van der Flier, L. G. et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136, 903–912 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muñoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘ + 4’ cell markers. EMBO J. 31, 3079–3091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Shroyer, N. F., Wallis, D., Venken, K. J., Bellen, H. J. & Zoghbi, H. Y. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev. 19, 2412–2417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gregorieff, A. et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology 137, 1333–1345 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Fevr, T., Robine, S., Louvard, D. & Huelsken, J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 27, 7551–7559 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Katz, J. P. et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619–2628 (2002).

    CAS  PubMed  Google Scholar 

  49. Ghaleb, A. M., McConnell, B. B., Kaestner, K. H. & Yang, V. W. Altered intestinal epithelial homeostasis in mice with intestine-specific deletion of the Kruppel-like factor 4 gene. Dev. Biol. 349, 310–320 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Shroyer, N. F. et al. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132, 2478–2488 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Leow, C. C., Romero, M. S., Ross, S., Polakis, P. & Gao, W. Q. Hath1, down-regulated in colon adenocarcinomas, inhibits proliferation and tumorigenesis of colon cancer cells. Cancer Res. 64, 6050–6057 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, Q., Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294, 2155–2158 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Barry, E. R. et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Diepenbruck, M. et al. Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition. J. Cell Sci. 127, 1523–1536 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Yi, C. et al. The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci. Signal. 6, ra77 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Strano, S. et al. The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol. Cell 18, 447–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A. & Nishida, E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J. 31, 1109–1122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Varelas, X. et al. The Hippo pathway regulates Wnt/β-catenin signaling. Dev. Cell 18, 579–591 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Azzolin, L. et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Gaffney, C. J. et al. Identification, basic characterization and evolutionary analysis of differentially spliced mRNA isoforms of human YAP1 gene. Gene 509, 215–222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Imajo, M., Ebisuya, M. & Nishida, E. HVJ-E-mediated gene transfer into the intestinal epithelium. Protoc. Exch. http://dx.doi.org/10.1038/protex.2014.049 (2014)

  65. Varelas, X. et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev. Cell 19, 831–844 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Zambelli, F., Pesole, G. & Pavesi, G. Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res. 37, W247–W252 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu, L. J. et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 11, 237 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang, d. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  70. Huang, d. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for thoughtful discussion and helpful comments on the manuscript. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (to E.N. and M.I.).

Author information

Authors and Affiliations

Authors

Contributions

M.I. and E.N. conceived and directed the project, and prepared the manuscript. M.I. carried out most experiments. M.E. gave helpful insights and discussion.

Corresponding authors

Correspondence to Masamichi Imajo or Eisuke Nishida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 A picture showing a mouse whose intestine was tied with nylon string and injected with the transfection solution during iGT.

Supplementary Figure 2 Establishment and characterization of iGT.

(a) Cy3-labeled siRNAs were introduced into the small intestine as in Fig. 1g–j (3 h after iGT). Low magnification images of the small intestine transfected with Cy3-siRNA. (b) 293T cells were transfected with an expression plasmid for DsRed (red) by using HVJ-E. Cells were treated with DMSO or Roscovitine (40 μM) for 3 days from 1 day before transfection.

Supplementary Figure 3 Phenotypic analysis of the YAP/TAZ-knockdown intestinal epithelium.

(a) Representative images of mouse intestinal crypt organoids (red arrowheads) cultured for 4 days in the presence of either DMSO or 20 μM of verteporfin (VP). In control (DMSO) samples, many large organoids developed. Treatment with verteporfin markedly suppressed the growth of organoids and, by 4 days, most organoids were collapsed. Scale bar: 100 μm. (b,c) Staining for chromogranin A (b) and lysozyme (c) in the small intestine transfected with control siRNAs or YAP/TAZ siRNAs. The YAP/TAZ double-knockdown did not affect the numbers of enteroendocrine cells and Paneth cells. Scale bars: 50 μm.

Supplementary Figure 4 Phenotypic analysis of the intestinal epithelium expressing a dominant negative form of TEAD4 (TEAD-EnR).

(a–c) An expression plasmid for TEAD4-EnR or a control plasmid was introduced into the intestinal epithelium. Scale bars: 50 μm. Staining for cleaved caspase-3 (a), lysozyme (b), and chromogranin A (c) showed that the TEAD4-EnR expression did not affect the numbers of apoptotic cells (a, red arrowheads), Paneth cells (b, green), or enteroendocrine cells (c, red arrowheads).

Supplementary Figure 5 Microarray analysis of the gene expression pattern regulated by YAP/TAZ, and co-immunoprecipitation of purified YAP and Klf4.

(a,b) Expression profiles of Paneth cell-specific genes (a) and genes which have been shown to regulate differentiation into goblet cells (b). The relative mRNA levels of each gene under four different conditions (siGFP, siYAP/siTAZ, shLacZ, and shYAP/shTAZ) are shown. The results show that the YAP/TAZ double-knockdown did not significantly affect the expression of these genes. (c) Expression profiles of β-catenin-dependent upregulated genes. (d) The percentages of the β-catenin-dependent upregulated genes and the other genes whose expression levels in the YAP/TAZ-knockdown epithelium were increased or decreased by more than 1.5-fold, as compared to control tissues, are shown. (e) The Klf4 mRNA levels in the control or the YAP/TAZ-knockdown tissues. (f) His-Klf4, GST-YAP, and/or GST-GFP were mixed and subjected to immunoprecipitation with anti-Klf4 antibody. GST-YAP, but not GST-GFP, was coprecipitated with His-Klf4. (g) Immunoblotting of lysates from the mouse small intestine transfected with expression plasmids for the indicated proteins. (h) (left) Immunoblotting of lysates from 293T cells, which were transfected with a control plasmid or an expression plasmid for either the full-length or the truncated form (151-504) of human YAP, with an anti-YAP antibody. Arrows indicate the bands of the full-length or the truncated form (151-504) of YAP. Note the presence of the truncated, shorter fragments of YAP (asterisks). (right) Immunoblotting of lysates from the mouse small intestine with an anti-YAP antibody. An arrow indicates the band of full-length mouse YAP. Note the presence of the truncated, shorter fragments of YAP (asterisk).

Supplementary Figure 6 Schematic representation of roles of YAP/TAZ in renewal of the intestinal epithelium.

YAP/TAZ function as a co-activator of TEAD transcription factors in crypt cells, especially in stem cells in which the expression levels of TEADs are high, and promote proliferation of these cells. Upon being destined for differentiation into the secretory lineage, YAP/TAZ cooperate with Klf4 to promote expression of genes, which promote differentiation into goblet cells (Muc2, Atoh1, etc.), in early common secretory progenitor cells and/or in late progenitor cells that are already specified into the goblet cell lineage. In addition, the YAP/TAZ-Klf4 complex also plays a role in promoting expression of a fraction of the enterocytic genes (Alpi, Efnb1, etc.) in absorptive progenitor cells.

Supplementary Figure 7 Uncropped scans of key western blots and DNA gel electrophoresis.

Supplementary information

Supplementary Information

Supplementary Information (PDF 692 kb)

Supplementary Table 1

A list of the YAP/TAZ-dependent upregulated genes. (XLSX 40 kb)

Supplementary Table 2

A list of the ISC signature genes whose expression levels are decreased by the YAP/TAZ double-knockdown. (XLSX 13 kb)

Supplementary Table 3

Gene ontology analyses of the YAP/TAZ-dependent upregulated genes bound by YAP and/or Klf4. (XLSX 14 kb)

Supplementary Table 4

Statistics source data. (XLSX 13 kb)

Supplementary Table 5

Sequences of primers used in this study. (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imajo, M., Ebisuya, M. & Nishida, E. Dual role of YAP and TAZ in renewal of the intestinal epithelium. Nat Cell Biol 17, 7–19 (2015). https://doi.org/10.1038/ncb3084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing