Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Myosin-X is an unconventional myosin that undergoes intrafilopodial motility

Abstract

Filopodia are thin cellular protrusions that are important in cell motility and neuronal growth cone guidance. The actin filaments that make up the core of a filopodium undergo continuous retrograde flow towards the cell body1,2. Surface receptors or particles can couple to this retrograde flow3,4 and can also move forward to the tips of filopodia4,5, although the molecular basis of forward transport is unknown. We report here that myosin-X (Myo10 or M10), the founding member of a novel class of myosins6, localizes to the tips of filopodia and undergoes striking forward and rearward movements within filopodia, which we term intrafilopodial motility. The movements of the GFP–M10 puncta correspond to forward and rearward movements of phase-dense granules along the filopodia. Finally, overexpressing full-length M10 (but not truncated forms of M10) causes an increase in the number and length of filopodia, indicating that M10 or its cargo may function in filopodial dynamics. The localization and movements of M10 strongly suggest that it functions as a motor for intrafilopodial motility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: M10 localizes to the tips of filopodia.
Figure 2: The HMM portion, but not the tail domains, of M10 is necessary and sufficient for targeting to the tips of filopodia.
Figure 3: M10 undergoes striking forward and rearward movements within the filopodia of HeLa cells.
Figure 4: GFP–M10 overexpression leads to an increase in the number and length of filopodia.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mitchison, T. & Kirschner, M. Neuron 1, 761–772 (1988).

    Article  CAS  Google Scholar 

  2. Forscher, P. & Smith, S. J. J. Cell Biol. 107, 1505–1516 (1988).

    Article  CAS  Google Scholar 

  3. Felsenfeld, D. P., Choquet, D. & Sheetz, M. P. Nature 383, 438–440 (1996).

    Article  CAS  Google Scholar 

  4. Grabham, P. W., Foley, M., Umeojiako, A. & Goldberg, D. J. J. Cell Sci. 113, 3003–3012 (2000).

    CAS  PubMed  Google Scholar 

  5. Sheetz, M. P., Baumrind, N. L., Wayne, D. B. & Pearlman, A. L. Cell 61, 231–241 (1990).

    Article  CAS  Google Scholar 

  6. Berg, J. S., Derfler, B. H., Pennisi, C. M., Corey, D. P. & Cheney, R. E. J. Cell Sci. 113, 3439–3451 (2000).

    CAS  Google Scholar 

  7. Mallavarapu, A. & Mitchison, T. J. Cell Biol. 146, 1097–1106 (1999).

    Article  CAS  Google Scholar 

  8. Sheetz, M. P., Wayne, D. B. & Pearlman, A. L. Cell Motil. Cytoskeleton 22, 160–169 (1992).

    Article  CAS  Google Scholar 

  9. Lin, C. H., Espreafico, E. M., Mooseker, M. S. & Forscher, P. Neuron 16, 769–782 (1996).

    Article  CAS  Google Scholar 

  10. Isakoff, S. J. et al. EMBO J. 17, 5374–5387 (1998).

    Article  CAS  Google Scholar 

  11. Yonemura, S. et al. J. Cell Biol. 140, 885–895 (1998).

    Article  CAS  Google Scholar 

  12. Chen, L. C., Wang, F., Meng, H., Corey, D. P. & Sellers, J. R. Mol. Biol. Cell 10s, 152a (1999).

    Google Scholar 

  13. Homma, K., Saito, J., Ikebe, R. & Ikebe, M. J. Biol. Chem. 276, 34348–34354 (2001).

    Article  CAS  Google Scholar 

  14. Mitchison, T. J. Cell Motil. Cytoskeleton 22, 135–151 (1992).

    Article  CAS  Google Scholar 

  15. Ramirez-Weber, F. A. & Kornberg, T. B. Cell 97, 599–607 (1999).

    Article  CAS  Google Scholar 

  16. Bryant, P. J. Curr. Biol. 9, R655–R657 (1999).

    Article  CAS  Google Scholar 

  17. Tsakraklides, V. et al. J. Cell Sci. 112, 2853–2865 (1999).

    CAS  PubMed  Google Scholar 

  18. Tang, N. & Ostap, E. M. Curr. Biol. 11, 1131–1135 (2001).

    Article  CAS  Google Scholar 

  19. Moores, S. L., Sabry, J. H. & Spudich, J. A. Proc. Natl Acad. Sci. USA 93, 443–446 (1996).

    Article  CAS  Google Scholar 

  20. Wei, Q. & Adelstein, R. S. Mol. Biol. Cell 11, 3617–3627 (2000).

    Article  CAS  Google Scholar 

  21. Berg, J. S., Powell, B. C. & Cheney, R. E. Mol. Biol. Cell 12, 780–794 (2001).

    Article  CAS  Google Scholar 

  22. Titus, M. A. Curr. Biol. 9, 1297–1303 (1999).

    Article  CAS  Google Scholar 

  23. Tuxworth, R. I. et al. Curr. Biol. 11, 318–329 (2001).

    Article  CAS  Google Scholar 

  24. Cox, D., Berg, J., Dale, B., Cheney, R. & Greenberg, S., Molecular Biology of the Cell 11, 375a (2000).

    Google Scholar 

  25. Nobes, C. D. & Hall, A. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  26. Borisy, G. G. & Svitkina, T. M. Curr. Opin. Cell Biol. 12, 104–112 (2000).

    Article  CAS  Google Scholar 

  27. Lee, W. L., Bezanilla, M. & Pollard, T. D. J. Cell Biol. 151, 789–800 (2000).

    Article  CAS  Google Scholar 

  28. Lanier, L. M. et al. Neuron 22, 313–325 (1999).

    Article  CAS  Google Scholar 

  29. Wu, D. Y. & Goldberg, D. J. J. Cell Biol. 123, 653–664 (1993).

    Article  CAS  Google Scholar 

  30. Rosenbaum, J. L., Cole, D. G. & Diener, D. R. J. Cell Biol. 144, 385–388 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Stuart for use of the 63 × phase lens used in this work and D. Moore (Lineberger Comprehensive Cancer Center Biostatistics Core Facility) for help with statistical analysis. We also thank T. Salmon, D. Kashatus, and O. Rodriguez for helpful discussions. This work was supported by National Institutes of Health grant DC03299 to R.E.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Cheney.

Supplementary information

Movie 1

This example demonstrates numerous instances of filopodial extension and retraction with GFP:M10 localized to the tip. (MOV 577 kb)

Movie 2

This example demonstrates extension and retraction of filopodia with GFP:M10 at the tip, as well as several instances of intrafilopodial motility within filopodia that remain attached to the substrate. (MOV 1397 kb)

Movie 3

This example demonstrates extension and retraction of filopodia with GFP:M10 at the tip, as well as several instances of intrafilopodial motility within filopodia that remain attached to the substrate. (MOV 1620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, J., Cheney, R. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4, 246–250 (2002). https://doi.org/10.1038/ncb762

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing