Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins

Abstract

Chromophore-assisted laser inactivation (CALI) is a light-mediated technique used to selectively inactivate proteins within cells. Here, we demonstrate that GFP can be used as a CALI reagent to locally inactivate proteins in living cells. We show that focused laser irradiation of EGFP–α-actinin expressed in Swiss 3T3 fibroblasts results in the detachment of stress fibres from focal adhesions (FAs), whereas the integrity of FAs, as determined by interference reflection microscopy (IRM), is preserved. Moreover, consistent with a function for focal adhesion kinase (FAK) in FA signalling and not FA structure, laser irradiation of EGFP–FAK did not cause either visible FA damage or stress fibre detachment, although in vitro CALI of isolated EGFP–FAK decreased its kinase activity, but not its binding to paxillin. These data indicate that CALI of specific FA components may be used to precisely dissect the functional significance of individual proteins required for the maintenance of this cytoskeletal structure. In vitro CALI experiments also demonstrated a reduction of EGFP–α-actinin binding to the cytoplasmic domain of the β1 integrin subunit, but not to actin. Thus, α-actinin is essential for the binding of microfilaments to integrins in the FA. CALI-induced changes in α-actinin result in the breakage of that link and the subsequent retraction of the stress fibre.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FA-targeted CALI of EGFP–α-actinin.
Figure 2: FA and stress fibres are not damaged by CALI irradiation.
Figure 3: A typical example of 'slow' retraction of stress fibre after CALI irradiation at the FA.
Figure 4: The effect of CALI on the actin-binding activity of EGFP–α-actinin in a cosedimentation assay.
Figure 5: The effect of CALI on the integrin-binding activity of α-actinin.
Figure 6: CALI irradiation of EGFP–FAK does not cause detachment of irradiated stress fibres or any visible damage to the FA.
Figure 7: The effect of CALI on the catalytic activity of FAK and EGFP–FAK.
Figure 8: A highly simplified schematic representation of the FA.

Similar content being viewed by others

References

  1. Wang, F.-S. & Jay, D. G. Chromophore-assisted laser inactivation (CALI): probing protein function in situ with a high degree of spatial and temporal resolution. Trends Cell Biol. 6, 442–445 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Jay, D. G. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc. Natl Acad. Sci. USA 85, 5454–5458 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liao, J. C., Roider, J. & Jay, D. G. Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proc. Natl Acad. Sci. USA 91, 2659–2663 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmucker, D., Su, A. L., Beermann, A., Jackle, H. & Jay, D. Chromophore-assisted laser inactivation of patched protein switches cell fate in the larval visual system of Drosophila. Proc. Natl Acad. Sci. USA 91, 2664–2668 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lamb, R. F. et al. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr. Biol. 7, 682–688 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Chang, H. Y. et al. Asymmetric retraction of growth cone filopodia following focal inactivation of calcineurin. Nature 376, 686–690 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Surrey, T. et al. Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc. Natl Acad. Sci. USA 95, 4293–4298 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lazarides, E. & Burridge, K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cell. Cell 6, 289–298 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Gilmore, A. P. & Romer, L. H. Inhibition of focal adhesion kinase (FAK) signalling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell 7, 1209–1224 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Otey, C. A. pp125FAK in the focal adhesion. Int. Rev. Cytol. 167, 161–183 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Edlund, M., Lotano, M. A. & Otey, C. A. Dynamics of α-actinin in focal adhesions and stress fibres visualized with α-actinin–green fluorescent protein. Cell Motil. Cytoskeleton 48, 175–189 (2001).

    Article  Google Scholar 

  12. Schaller, M. D. et al. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl Acad. Sci. USA 89, 5192–5196 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanks, S. K., Calalb, M. B., Harper, M. C. & Patel, S. K. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc. Natl Acad. Sci. USA 89, 8487–8491 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burridge, K., Turner, C. E. & Romer, L. H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell Biol. 119, 893–903 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Guan, J. L. & Shalloway, D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358, 690–692 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Kornberg, L., Earp, H. S., Parsons, J. T., Schaller, M. & Juliano, R. L. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J. Biol. Chem. 267, 23439–23442 (1992).

    CAS  PubMed  Google Scholar 

  17. Romer, L. H., McLean, N., Turner, C. E. & Burridge, K. Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells. Mol. Biol. Cell 5, 349–361 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Richardson, A. & Parsons, T. A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125FAK. Nature 380, 538–540 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Schaller, M. D. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta 1540, 1–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Cooley, M. A., Broome, J. M., Ohngemach, C., Romer, L. H. & Schaller, M. D. Paxillin binding is not sole determinant of focal adhesion localization or dominant-negative activity of focal adhesion kinase/focal adhesion kinase-related nonkinase. Mol. Biol. Cell 11, 3247–3263 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pavalko, F. M., Otey, C. A., Simon, K. O. & Burridge, K. Alpha-actinin: a direct link between actin and integrins. Biochem. Soc. Trans. 19, 1065–1069 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Otey, C. A., Vasquez, G. B., Burridge, K. & Erickson, B. W. Mapping of the α-actinin binding site with the β1 integrin cytoplasmic domain. J. Biol. Chem. 286, 21193–21197 (1993).

    Google Scholar 

  24. Sampath, R., Gallagher, P. J. & Pavalko, F. M. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. J. Biol. Chem. 273, 33588–33594 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Greenwood, J. A., Theibert, A. B., Prestwich, G. D. & Murphy-Ulrich, J. E. Restructuring of focal adhesion plaques by PI 3-kinase: Regulation by PtdIns(3,4,5)-P3 binding to α-actinin. J. Cell Biol. 150, 627–641 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Otey, C. A., Pavalko, F. M. & Burridge, K. An interaction between α-actinin and the β1 integrin subunit in vitro. J. Cell Biol. 111, 721–729 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Pavalko, F. M. & LaRoche, S. M. Activation of human neutrophils induces an interaction between the integrin β2-subunit (CD18) and the actin binding protein α-actinin. J. Immunol. 151, 3795–3807 (1993).

    CAS  PubMed  Google Scholar 

  28. Pavalko, F. M. & Burridge, K. Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of α-actinin. J. Cell Biol. 114, 481–491 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Burridge, K. & Wodnicka-Chrzanowska, M. Focal adhesions, contractility, and signalling. Annu. Rev. Cell Dev. Biol. 12, 463–519 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Koppel, D. Fluorescence redistribution after photobleaching. A new multipoint analysis of membrane translational dynamics. Biophys. J. 28, 281–292 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Lotano, M. Edlund and J. Cohen for their helpful assistance. We are especially grateful to M. Schaller and J. Broome for their help and advice in setting up the in vitro kinase assay. This work was supported by National Institutes of Health grants GM 35325, the Cell Migration Consortium IK54GM64346 and by P60-DE13079 from the National Institute for Dental and Cranial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Jacobson.

Supplementary information

Figure S1

Wild-type Swiss 3T3 fibroblasts maintain function after a typical CALI dose of laser light. (PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajfur, Z., Roy, P., Otey, C. et al. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat Cell Biol 4, 286–293 (2002). https://doi.org/10.1038/ncb772

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing