Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion

A Corrigendum to this article was published on 01 November 2002

Abstract

The formation of axon trajectories requires integration of local adhesive interactions with directional information from attractive and repulsive cues. Here, we show that these two types of information are functionally integrated; activation of the transmembrane receptor Roundabout (Robo) by its ligand, the secreted repulsive guidance cue Slit, inactivates N-cadherin-mediated adhesion. Loss of N-cadherin-mediated adhesion is accompanied by tyrosine phosphorylation of β-catenin and its loss from the N-cadherin complex, concomitant with the formation of a supramolecular complex containing Robo, Abelson (Abl) kinase and N-cadherin. Local formation of such a receptor complex is an ideal mechanism to steer the growth cone while still allowing adhesion and growth in other directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activated Robo inhibits N-cadherin-mediated adhesion.
Figure 5: Deletion of the CC3 region of the Robo cytoplasmic domain restores N-cadherin function.
Figure 2: Slit inhibits retinal neurite extension on a substrate of N-cadherin.
Figure 3: Activated Robo results in hyperphosphorylation of β-catenin and dissociation of the cadherin–β-catenin bond.
Figure 4: Slit-activated full-length Robo or the cytoplasmic domain of Robo interacts with N-cadherin.
Figure 6: A cell-permeable peptide mimicking the CC3 domain blocks the effect of Slit.
Figure 7: The tyrosine kinase inhibitor AG957 reverses the effect of Slit on N-cadherin function.
Figure 8: Formation of the Robo–Abl–N-cadherin complex.

Similar content being viewed by others

References

  1. Yu, T. W. & Bargmann, C. I. Dynamic regulation of axon guidance. Nature Neurosci. Suppl. 4, 1169–1176 (2001).

    Article  CAS  Google Scholar 

  2. Tepass, U., Truong, K., Godt D., Ikura, M. & Peifer, M. Cadherins in embryonic and neural morphogenesis. Nature Rev. Mol. Cell Biol. 1, 91–100 (2000).

    Article  CAS  Google Scholar 

  3. Redies, C. Cadherins in the central nervous system. Prog. Neurobiol. 61, 611–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Ranscht, B. Cadherins: molecular codes for axon guidance and synapse formation. Int. J. Develop. Neurosci. 18, 643–651 (2000).

    Article  CAS  Google Scholar 

  5. Bixby, J. L. & Zhang, R. Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J. Cell Biol. 110, 1253–1260 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Bixby, J. L., Lilien, J. & Reichardt, L. F. Identification of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro. J. Cell Biol. 107, 353–361 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Neugebauer, K. M., Tomaselli, K. J., Lilien, J. & Reichardt, L. F. N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro. J. Cell Biol. 107, 1117–1187 (1988).

    Article  Google Scholar 

  8. Tomaselli, K. J., Neugebauer, K. M., Bixby, J. L., Lilien, J. & Reichardt, L. F. N-cadherin and integrin: Two receptor systems that mediated neuronal process outgrowth on astrocyte surfaces. Neuron 1, 33–43 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Matsunaga, M., Hatta, K., Nagafuchi, A. & Takeichi, M. Guidance of optic nerve fibres by N-cadherin adhesion molecules. Nature 334, 62–64 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Wheelock, M. J., Knudsen, K. A. & Johnson, K. R. Membrane–cytoskeleton interactions with cadherin cell adhesion proteins: roles of catenins as linker proteins. Curr. Top. Mem. 43, 169–185 (1996).

    Article  CAS  Google Scholar 

  12. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Holmes, G. P. et al. Distinct but overlapping expression patterns of two vertebrate slit homologues implies functional roles in CNS development and organogenesis. Mech. Dev. 79, 57–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Bagri, A. et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33, 233–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Erskine, L. et al. Retinal ganglion cell axon guidance in the mouse optic chiasm: expression and function of Robos and Slits. J. Neurosci. 20, 4975–4982 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niclou, S. P., Jia, L. & Raper, J. A. Slit2 is a repellent for retinal ganglion cell axons. J. Neurosci. 20, 4962–4974 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ringstedt, T. et al. Slit inhibition of retinal axon growth and its role in retinal axon pathfinding and innervation patterns in the Diencephalon. J. Neurosci. 20, 4983–4991 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C. S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10, 409–426 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the Robo receptor in Drosophila. Cell 96, 785–794 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Rajagopalan, S., Nicolas, E., Vivancos, V., Berger, J. & Dickson, B. J. Crossing the midline: roles and regulation of Robo receptors. Neuron 28, 767–777 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Murray, M. J. & Whitington, P. M. Effects of roundabout on growth cone dynamics, filopodial length, and growth cone morphology at the midline and throughout the neuropile. J. Neurosci. 19, 7901–7912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lilien, J., Balsamo, J., Arregui, C. & Xu, G. Turn-off, drop-out: functional state switching of cadherins. Develop. Dyn. 224, 18–29 (2002).

    Article  CAS  Google Scholar 

  24. Rothberg, J. M., Jacobs, J. R., Goodman, C. S. & Artavanis-Tsakonas, S. Slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev. 4, 2169–2187 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Bashaw G. J. & Goodman, C. S. Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion. Cell 97, 917–926 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: Silencing of netrin attraction by Slit through a Robo–DCC receptor complex. Science 291, 1928–1938 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Grunwald, G. B. Cadherin cell adhesion molecules in retinal development and pathology. Prog. Retinal Eye Res. 15, 363–392 (1996).

    Article  CAS  Google Scholar 

  28. Gaya-Gonzalez, L., Balsamo, J., Swaminathan, N. & Lilien, J. Antibodies to the retina N-Acetylgalactosaminylphosphotransferase inhibit neurite outgrowth. J. Neurosci. Res. 29, 474–480 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Lambert, M., Padilla, F. & Mege, R. M. Immobilized dimers of N-cadherin–Fc chimera mimic cadherin-mediated cell contact formation: contribution of both outside-in and inside-out signals. J. Cell Sci. 113, 2207–2219 (2000).

    CAS  PubMed  Google Scholar 

  30. Balsamo, J., Thiboldeaux, R., Swaminathan, N. & Lilien, J. Antibodies to the retina N-acetylgalactosaminylphosphotransferase modulate N-cadherin-mediated adhesion and uncouple the N-cadherin transferase complex from the actin-containing cytoskeleton. J. Cell Biol. 113, 429–436 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Roura, S., Miravet, S., Piedra, J., de Herreros, A. G. & Duñach, M. Regulation of E-cadherin–catenin association by tyrosine phosphorylation. J. Biol. Chem. 274, 36734–36740 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Piedra, J. et al. Regulation of β-catenin structure and activity by tyrosine phosphorylation. J. Biol. Chem. 276, 20436–20443 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Van Etten, R. A. Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol. 9, 179–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101, 703–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Derossi, D., Chassaing, G. & Prochiantz, A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 8, 84–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Arregui, C., Pathre, P., Lilien, J. & Balsamo, J. The nonreceptor tyrosine kinase Fer mediates cross-talk between N-cadherin and β1-integrins. J. Cell Biol. 149, 1263–1274 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, X., Layton, J. E., Elefanty, A. & Lieschke, G. J. Comparison of effects of the tyrosine kinase inhibitors AG957, AG490, and STI571 on BCR-ABL-expressing cells, demonstrating synergy between AG490 and STI571. Blood 97, 2008–2015 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Lu, Q. et al. Brain Armadillo protein δ-catenin interacts with Abl tyrosine kinase and modulates cellular morphogenesis in response to growth factors. J. Neurosci. Res. 67, 618–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Li, H., Leung, T.-C., Hoffman, S., Balsamo, J. & Lilien, J. Coordinate regulation of cadherin and integrin function by the chondroitin sulfate proteoglycan neurocan. J. Cell Biol. 149, 1275–1288 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oohira, A., Matsui, F., Watanabe, E., Kushima, Y. & Maeda, N. Developmentally regulated expression of a brain specific species of chondroitin sulfate proteoglycan, neurocan, identified with a monoclonal antibody IG2 in the rat cerebrum. Neurosci. 60, 145–157 (1994).

    Article  CAS  Google Scholar 

  41. Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase cdc42 in the Slit–Robo pathway. Cell 107, 209–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Bashaw, G. J., Hu, H., Nobes, C. D. & Goodman, C. S. A novel Dbl family RhoGEF promotes Rho-dependent axon attraction to the central nervous system midline in Drosophila and overcomes Robo repulsion. J. Cell Biol. 155, 1117–1122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fritz, J. L. & VanBerkum, M. F. Calmodulin and son of sevenless dependent signaling pathways regulate midline crossing of axons in the Drosophila CNS. Development 127, 1991–2000 (2000).

    CAS  PubMed  Google Scholar 

  44. Lanier, L. M. & Getler, F. B. From Abl to actin: Abl tyrosine kinase and associated proteins in growth cone motility. Curr. Opin. Neurobiol. 10, 80–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Riehl, R. et al. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17, 837–848 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Plump, A. S. et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Fricke, C., Lee, J.-S., Geiger-Rudolph, S., Bonhoeffer, F. & Chien, C.-B. Astray, a Zebrafish roundabout homolog required for retinal axon guidance. Science 292, 507–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Hutson, L. D. & Chien, C.-B. Pathfinding and error correction by retinal axons: the role of astray/robo2. Neuron 33, 205–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Loureiro, J. & Peifer, M. Roles of Armadillo, a Drosophila catenin, during central nervous system development. Curr. Biol. 8, 622–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Grevengoed, E. E., Loureiro, J. J., Jesse, T. L. & Peifer, M. Abelson kinase regulates epithelial morphogenesis in Drosophila. J. Cell Biol. 155, 1185–1198 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Goodman and M. Seeger for antibody and cDNA reagents and K. Campbell, D. Eberl and C.-F. Wu for careful reading of the manuscript. This work was supported by grants from the National Eye Institute (J.L. and J.B.) and the National Science Foundation (M.V.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Lilien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, J., Mahfooz, N., Arregui, C. et al. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 4, 798–805 (2002). https://doi.org/10.1038/ncb858

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing