Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2

Abstract

The promyelocytic leukaemia (PML) gene is translocated in most acute promyelocytic leukaemias and encodes a tumour suppressor protein. PML is involved in multiple apoptotic pathways and is thought to be pivotal in γ irradiation-induced apoptosis. The DNA damage checkpoint kinase hCds1/Chk2 is necessary for p53-dependent apoptosis after γ irradiation. In addition, γ irradiation-induced apoptosis also occurs through p53-independent mechanisms, although the molecular mechanism remains largely unknown. Here, we report that hCds1/Chk2 mediates γ irradiation-induced apoptosis in a p53-independent manner through an ataxia telangiectasia-mutated (ATM)–hCds1/Chk2–PML pathway. Our results provide the first evidence of a functional relationship between PML and a checkpoint kinase in γ irradiation-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: hCds1/Chk2 phosphorylates PML at Ser 117 in vitro.
Figure 2: hCds1/Chk2 phosphorylates PML at Ser 117 in vivo.
Figure 3: Colocalization of hCds1/Chk2 and PML in PML NBs.
Figure 4: Interaction between hCds1/Chk2 and PML.
Figure 5: A role for PML phosphorylation in γ-irradiation-induced apoptosis.

Similar content being viewed by others

References

  1. de The, H. et al. The PML-RAR α fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Goddard, A. D., Borrow, J., Freemont, P. S. & Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254, 1371–1374 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR α with a novel putative transcription factor, PML. Cell 66, 663–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Mu, Z. M., Chin, K. V., Liu, J. H., Lozano, G. & Chang, K. S. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol. Cell. Biol. 14, 6858–6867 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mu, Z. M., Le, X. F., Vallian, S., Glassman, A. B. & Chang, K. S. Stable overexpression of PML alters regulation of cell cycle progression in HeLa cells. Carcinogenesis 18, 2063–2069 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Le, X. F., Vallian, S., Mu, Z. M., Hung, M. C. & Chang, K. S. Recombinant PML adenovirus suppresses growth and tumorigenicity of human breast cancer cells by inducing G1 cell cycle arrest and apoptosis. Oncogene 16, 1839–1849 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. He, D. et al. Adenovirus-mediated expression of PML suppresses growth and tumorigenicity of prostate cancer cells. Cancer Res. 57, 1868–1872 (1997).

    CAS  PubMed  Google Scholar 

  8. Wang, Z. G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Zhong, S. et al. A role for PML and the nuclear body in genomic stability. Oncogene 18, 7941–7947 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Z. G. et al. PML is essential for multiple apoptotic pathways. Nature Genet. 20, 266–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Quignon, F. et al. PML induces a novel caspase-independent death process. Nature Genet. 20, 259–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Brown, A. L. et al. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl Acad. Sci. USA 96, 3745–3750 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278–288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000); erratum in Genes Dev. 14, 750 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruiter, G. A., Zerp, S. F., Bartelink, H., van Blitterswijk, W. J. & Verheij, M. Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res. 59, 2457–2463 (1999).

    CAS  PubMed  Google Scholar 

  19. Merritt, A. J., Allen, T. D., Potten, C. S. & Hickman, J. A. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after γ-irradiation. Oncogene 14, 2759–2766 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Strasser, A., Harris, A. W., Jacks, T. & Cory, S. DNA damage can induce apoptosis in proliferating lymphoid cells through p53-independent mechanisms inhibitable by Bcl-2. Cell 79, 329–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Tamura, T. et al. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes. Nature 376, 596–599 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Bartek, J., Falck, J. & Lukas, J. CHK2 kinase — a busy messenger. Nature Rev. Mol. Cell Biol. 2, 877–886 (2001).

    Article  CAS  Google Scholar 

  23. Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H. & Chung, J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Fagioli, M. et al. Alternative splicing of PML transcripts predicts co-expression of several carboxy-terminally different protein isoforms. Oncogene 7, 1083–1091 (1992).

    CAS  PubMed  Google Scholar 

  25. Nason-Burchenal, K. et al. Interferon augments PML and PML/RAR α expression in normal myeloid and acute promyelocytic cells and cooperates with all-trans retinoic acid to induce maturation of a retinoid-resistant promyelocytic cell line. Blood 88, 3926–3936 (1996).

    CAS  PubMed  Google Scholar 

  26. Guidez, F. et al. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 91, 2634–2642 (1998).

    CAS  PubMed  Google Scholar 

  27. Bartkova, J. et al. Chk2 tumour suppressor protein in human spermatogenesis and testicular germ-cell tumours. Oncogene 20, 5897–5902 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lukas, C. et al. DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res. 61, 4990–4993 (2001).

    CAS  PubMed  Google Scholar 

  29. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. & Lukas, J. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, X., Webster, S. R. & Chen, J. Characterization of tumor-associated Chk2 mutations. J. Biol. Chem. 276, 2971–2974 (2000).

    Article  PubMed  Google Scholar 

  31. Ward, I. M., Wu, X. & Chen, J. Threonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks. J. Biol. Chem. 276, 47755–47758 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Sugimoto, K. et al. Frequent mutations in the p53 gene in human myeloid leukemia cell lines. Blood 79, 2378–2383 (1992).

    CAS  PubMed  Google Scholar 

  33. Wolf, D. & Rotter, V. Major deletions in the gene encoding the p53 tumour antigen cause lack of p53 expression in HL-60 cells. Proc. Natl Acad. Sci. USA 82, 790–794 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gotoh, T., Oyadomari, S., Mori, K. & Mori, M. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J. Biol. Chem. 277, 12343–12350 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Guidarelli, A., Clementi, E., De Nadai, C., Bersacchi, R. & Cantoni, O. TNFα enhances the DNA single-strand breakage induced by the short-chain lipid hydroperoxide analogue tert-butylhydroperoxide through ceramide-dependent inhibition of complex III followed by enforced superoxide and hydrogen peroxide formation. Exp. Cell Res. 270, 56–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Orengo, G. et al. Potentiation of topoisomerase I and II inhibitors cell killing by tumour necrosis factor: relationship to DNA strand breakage formation. Jpn J. Cancer Res. 83, 1132–1136 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhong, S. et al. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J. Exp. Med. 191, 631–640 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Guo, A. et al. The function of PML in p53-dependent apoptosis. Nature Cell Biol. 2, 730–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Cogswell, J. P., Brown, C. E., Bisi, J. E. & Neill, S. D. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ 11, 615–623 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Alcalay for the PML vector; J. H. Chung for the V5–hCds1/Chk2(WT, KD) constructs and anti-hCds1/Chk2 antibodies; Y. Shiloh for the AT cells; Y. Xu and C. Combs for help with confocal microscopy; J. P. Cogswell and C. E. Brown for help with recombinant adenovirus production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung K. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Kuo, C., Bisi, J. et al. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4, 865–870 (2002). https://doi.org/10.1038/ncb869

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing