Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Wound healing recapitulates morphogenesis in Drosophila embryos

Abstract

The capacity to repair a wound is a fundamental survival mechanism that is activated at any site of damage throughout embryonic and adult life1. To study the cell biology and genetics of this process, we have developed a wounding model in Drosophila melanogaster embryos that allows live imaging of rearrangements and changes in cell shape, and of the cytoskeletal machinery that draws closed an in vivo wound. Using embryos expressing green fluorescent protein (GFP) fusion proteins, we show that two cytoskeletal-dependent elements — an actin cable and dynamic filopodial/lamellipodial protrusions — are expressed by epithelial cells at the wound edge and are pivotal for repair. Modulating the activities of the small GTPases Rho and Cdc42 demonstrates that these actin-dependent elements have differing cellular functions, but that either alone can drive wound closure. The actin cable operates as a 'purse-string' to draw the hole closed, whereas filopodia are essential for the final 'knitting' together of epithelial cells at the end of repair. Our data suggest a more complex model for epithelial repair than previously envisaged and highlight remarkable similarities with the well-characterized morphogenetic movement of dorsal closure in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in cell shape and rearrangements during wound closure.
Figure 2: The cytoskeletal machinery of wound closure.
Figure 3: Filopodial interactions during repair.
Figure 4: Analysis of wound repair in Rho mutant embryos.
Figure 5: Analysis of repair in dominant-negative Cdc42-expressing wounds.

Similar content being viewed by others

References

  1. Martin, P. Science 276, 75–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Jacinto, A., Martinez-Arias, A. & Martin, P. Nature Cell Biol. 3, E117–E123 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Martinez-Arias, A. in The Development of Drosophila melanogaster (eds Bate, M. and Martinez-Arias, A.) 517–607 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  4. Jacinto, A., Woolner, S. & Martin, P. Dev. Cell 3, 9–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Harden, N. Differentiation 70, 181–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Jacinto, A. et al. Curr. Biol 10, 1420–1426 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Magie, C. R., Meyer, M. R., Gorsuch, M. S. & Parkhurst, S. M. Development 126, 5353–5364 (1999).

    CAS  PubMed  Google Scholar 

  8. Harden, N., Ricos, M., Ong, Y. M., Chia, W. & Lim, L. J. Cell Sci. 112, 273–284 (1999).

    CAS  PubMed  Google Scholar 

  9. Bloor, J. W. & Kiehart, D. P. Development 129, 3173–3183 (2002).

    CAS  PubMed  Google Scholar 

  10. Jacinto, A. et al. Curr. Biol. 12, 1245–1250 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Martin, P. & Lewis, J. Nature 360, 179–183 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Bement, W. M., Forscher, P. & Mooseker, M. S. J. Cell Biol. 121, 565–578 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Danjo, Y. & Gipson, I. K. J. Cell Sci. 111, 3323–3332 (1998).

    CAS  PubMed  Google Scholar 

  14. Brock, J., Midwinter, K., Lewis, J. & Martin, P. J. Cell Biol. 135, 1097–1107 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Foe, V. E. Development 107, 1–22 (1989).

    CAS  PubMed  Google Scholar 

  16. Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. J. Cell Biol. 149, 471–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Young, P. E., Richman, A. M., Ketchum, A. S. & Kiehart, D. P. Genes Dev. 7, 29–41 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Strutt, D. I., Weber, U. & Mlodzik, M. Nature 387, 292–295 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Ridley, A. J. & Hall, A. Cell 70, 389–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Nobes, C. D. & Hall, A. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Genova, J. L., Jong, S., Camp, J. T. & Fehon, R. G. Dev. Biol. 221, 181–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Hakeda-Suzuki, S. et al. Nature 416, 438–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Ramet, M., Lanot, R., Zachary, D. & Manfruelli, P. Dev. Biol. 241, 145–156 (2002).

    Article  PubMed  Google Scholar 

  24. Brand, A. H. & Perrimon, N. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  25. Verkhusha, V. V., Tsukita, S. & Oda, H. FEBS Lett. 445, 395–401 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Oda, H. & Tsukita, S. Dev. Genes Evol. 209, 218–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Mizuno, T., Tsutsui, K. & Nishida, Y. Development 129, 1215–1223 (2002).

    CAS  PubMed  Google Scholar 

  29. Karnovsky, M. J. J. Cell Biol. 27, 137–138 (1965).

    Google Scholar 

Download references

Acknowledgements

We thank all in the Martin lab for constant encouragement and support, K. Barrett and K. Nikolaidou for helpful discussions, M. Turmaine for help with electron microscopy and A. Martinez-Arias for continued enthusiasm and advice. The GFP fusion fly stocks were generously supplied by H. Oda (GFP–actin and α-catenin) and R. Karess (GFP–sqh). The anti-Rho1 antiserum was kindly provided by C. Magie and S. Parkhurst. Thanks also to the Bloomington Stock Center, D. Strutt, B. Dickson and N. Harden for other fly stocks. This work is funded by the Medical Research Council, The Wellcome Trust, The Royal Society and a Pfizer UK studentship to W.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Movie 1

Movie 1 shows the final hour of epithelial repair in a wild type embryo expressing GFP-actin. (MOV 2762 kb)

Movie 2

Movie 2 illustrates repair of a mechanically-created incisional wound made to an embryo expressing GFP-actin. (MOV 2163 kb)

Movie 3

Movie 3 reveals actin dynamics during wound closure in a Rho mutant embryo expressing GFP-actin. (MOV 2270 kb)

Movie 4

Movie 4 shows a direct comparison of wild type (right) and Rho mutant (left) wound closure in embryos expressing GFP-actin. (MOV 4667 kb)

Movie 5

Movie 5 is a direct comparison of wild type (right) and Cdc42N17-expressing (left) wounds. (MOV 3257 kb)

Legends

Legends to movies (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, W., Jacinto, A., Grose, R. et al. Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4, 907–912 (2002). https://doi.org/10.1038/ncb875

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing