Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling

Abstract

WAVE-1, which is also known as Scar, is a scaffolding protein that directs actin reorganization by relaying signals from the GTPase Rac to the Arp2/3 complex. Although the molecular details of WAVE activation by Rac have been described, the mechanisms by which these signals are terminated remain unknown. Here we have used tandem mass spectrometry to identify previously unknown components of the WAVE signalling network including WRP, a Rac-selective GTPase-activating protein. WRP binds directly to WAVE-1 through its Src homology domain 3 and specifically inhibits Rac function in vivo. Thus, we propose that WRP is a binding partner of WAVE-1 that functions as a signal termination factor for Rac.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The WAVE-1 protein network and characterization of WRP.
Figure 2: Defining the interactive surfaces on WRP and WAVE-1.
Figure 3: WRP is a Rac-selective GTPase-activating protein.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hall, A. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, A. E. & Pringle, J. R. J. Cell Biol. 98, 934–945 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Mullins, R. D. Curr. Opin. Cell Biol. 12, 91–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Machesky, L. M. & Insall, R. H. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Takenawa, T. & Miki, H. J. Cell Sci. 114, 1801–1809 (2001).

    CAS  PubMed  Google Scholar 

  6. Bear, J. E., Krause, M. & Gertler, F. B. Curr. Opin. Cell Biol. 13, 158–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Welch, M. D. Trends Cell Biol. 9, 423–427 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Higgs, H. N. & Pollard, T. D. Annu. Rev. Biochem. 70, 649–676 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Westphal, R. S., Soderling, S. H., Alto, N. M., Langeberg, L. K. & Scott, J. D. EMBO J. 19, 4589–4600 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miki, H., Suetsugu, S. & Takenawa, T. EMBO J. 17, 6932–6941 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. Nature 408, 732–735 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Chin, L. S., Nugent, R. D., Raynor, M. C., Vavalle, J. P. & Li, L. J. Biol. Chem. 275, 1191–1200 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Stradal, T. et al. Curr. Biol. 11, 891–895 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Scita, G. et al. Nature 401, 290–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Erpel, T., Superti-Furga, G. & Courtneidge, S. A. EMBO J. 14, 963–975 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rickles, R. J. et al. EMBO J. 13, 5598–5604 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rittinger, K. et al. Nature 388, 693–697 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Boguski, M. S. & McCormick, F. Nature 366, 643–654 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Luo, L., Jan, L. & Jan, Y. N. Perspect. Dev. Neurobiol. 4, 199–204 (1996).

    CAS  PubMed  Google Scholar 

  20. Luo, L., Jan, L. Y. & Jan, Y. N. Curr. Opin. Neurobiol. 7, 81–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Hussain, N. K. et al. Nature Cell Biol. 3, 927–932 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Nature 418, 790–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Frank, R. & Overwin, H. Methods Mol. Biol. 66, 149–169 (1996).

    CAS  PubMed  Google Scholar 

  25. Self, A. J. & Hall, A. Methods Enzymol. 256, 67–76 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Langeberg for help preparing the manuscript; R. Mouton for technical assistance; C. S. Boone and M. Evangelista for sharing unpublished data and for critical review of the manuscript; and T. R. Soderling for support. This work was supported by grants from the National Institutes of Health, the Canadian Institutes of Health Research (CIHR), the National Cancer Institute of Canada (NCIC) and the Ontario R&D Challenge Fund (J.D.S., T.P. & G.A.W.). T.P. is a CIHR Distinguished Scientist. K.L.B. is supported by a National Science and Engineering Research Council of Canada (NSERC)/MDS-Sciex Industrial Postgraduate Scholarship. S.H.O. is supported by a postdoctoral fellowship from the National Medical Research Council of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Scott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures and methods

Figure S1. Immunocytochemical experiments were performed to confirm the mass spectrometry and biochemical data and assess the cellular distribution of WRP and WAVE. (PDF 300 kb)

Figure S2. HEK293 cells were transfected with WRP or WRPGAP and Rac-GTP levels were measured by the Pak-1 capture assay.

Supplementary Methods

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soderling, S., Binns, K., Wayman, G. et al. The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nat Cell Biol 4, 970–975 (2002). https://doi.org/10.1038/ncb886

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing