Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Active cyclin B1–Cdk1 first appears on centrosomes in prophase

Abstract

Cyclin B1–Cdk1 is the key initiator of mitosis, but when and where activation occurs has not been precisely determined in mammalian cells. Activation may occur in the nucleus or cytoplasm, as just before nuclear envelope breakdown, Polo-like kinase1 (Plk1) is proposed to phosphorylate cyclin B1 in its nuclear export sequence (NES), to trigger rapid nuclear import. We raised phospho-specific antibodies against cyclin B1 that primarily recognise the active form of the complex. We show that cyclin B1 is initially phosphorylated on centrosomes in prophase and that Plk1 phosphorylates cyclin B1, but not in the NES. Furthermore, phosphorylation by Plk1 does not cause cyclin B1 to move into the nucleus. We conclude that cyclin B1–Cdk1 is first activated in the cytoplasm and that centrosomes may function as sites of integration for the proteins that trigger mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specificity of anti-cyclin B1 S126-P and anti-cyclin B1 S133-P antibodies.
Figure 2: S126-P and S133-P forms of cyclin B1 appear first on centrosomes in prophase.
Figure 3: Plk1 preferentially phosphorylates cyclin B1 on Ser 133.
Figure 4: Plk1 phosphorylates S133 in vivo without triggering mitosis.
Figure 5: Plk1 does not trigger the import of cyclin B1 to the nucleus.

Similar content being viewed by others

References

  1. Nurse, P. Nature 344, 503–508 (1990).

    Article  CAS  Google Scholar 

  2. Pines, J. Nature Cell Biol. 1, E73–E79 (1999).

    Article  CAS  Google Scholar 

  3. Pines, J. & Hunter, T. J. Cell Biol. 115, 1–17 (1991).

    Article  CAS  Google Scholar 

  4. Bailly, E., Pines, J., Hunter, T. & Bornens, M. J. Cell Sci. 101, 529–545 (1992).

    CAS  PubMed  Google Scholar 

  5. Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. EMBO J. 17, 4127–4138 (1998).

    Article  CAS  Google Scholar 

  6. Yang, J. et al. Genes Dev. 12, 2131–2143 (1998).

    Article  CAS  Google Scholar 

  7. Toyoshima, F., Moriguchi, T., Wada, A., Fukuda, M. & Nishida, E. EMBO J. 17, 2728–2735 (1998).

    Article  CAS  Google Scholar 

  8. Li, J., Meyer, A.N. & Donoghue, D.J. Proc. Natl Acad. Sci. USA 94, 502–507 (1997).

    Article  CAS  Google Scholar 

  9. Pines, J. & Hunter, T. EMBO J. 13, 3772–3781 (1994).

    Article  CAS  Google Scholar 

  10. Hagting, A., Jackman, M., Simpson, K. & Pines, J. Curr. Biol. 9, 680–689 (1999).

    Article  CAS  Google Scholar 

  11. Yang, J., Song, H., Walsh, S., Bardes, E.S. & Kornbluth, S. J. Biol. Chem. 276, 3604–3609 (2001).

    Article  CAS  Google Scholar 

  12. Toyoshima-Morimoto, F., Taniguchi, E., Shinya, N., Iwamatsu, A. & Nishida, E. Nature 410, 215–220 (2001).

    Article  CAS  Google Scholar 

  13. Borgne, A., Ostvold, A.C., Flament, S. & Meijer, L. J. Biol. Chem. 274, 11977–11986 (1999).

    Article  CAS  Google Scholar 

  14. Meijer, L. et al. EMBO J. 8, 2275–2282 (1989).

    Article  CAS  Google Scholar 

  15. Ookata, K., Hisanaga, S., Okano, T., Tachibana, K. & Kishimoto, T. EMBO J. 11, 1763–1772 (1992).

    Article  CAS  Google Scholar 

  16. Kelm, O., Wind, M., Lehmann, W.D. & Nigg, E.A. J. Biol. Chem. 277, 25247–25256. (2002).

    Article  CAS  Google Scholar 

  17. Hendzel, M.J. et al. Chromosoma 106, 348–360 (1997).

    Article  CAS  Google Scholar 

  18. Wei, Y., Mizzen, C.A., Cook, R.G., Gorovsky, M.A. & Allis, C.D. Proc. Natl Acad. Sci. USA 95, 7480–7484 (1998).

    Article  CAS  Google Scholar 

  19. Clute, P. & Pines, J. Nature Cell Biol. 1, 82–87 (1999).

    Article  CAS  Google Scholar 

  20. Kudo, N. et al. Proc. Natl Acad. Sci. USA 96, 9112–9117 (1999).

    Article  CAS  Google Scholar 

  21. Masui, Y. & Markert, C.L. J. Exp. Zool. 177, 129–145 (1971).

    Article  CAS  Google Scholar 

  22. Hara, K., Tydeman, P. & Kirschner, M. Proc. Natl. Acad. Sci. USA 77, 462–466 (1980).

    Article  CAS  Google Scholar 

  23. Gerhart, J., Wu, M. & Kirschner, M. J. Cell Biol. 98, 1247–1255 (1984).

    Article  CAS  Google Scholar 

  24. Picard, A., Labbe, J.C., Barakat, H., Cavadore, J.C. & Doree, M. J. Cell Biol. 115, 337–344 (1991).

    Article  CAS  Google Scholar 

  25. Newport, J.W. & Kirschner, M.W. Cell 37, 731–742 (1984).

    Article  CAS  Google Scholar 

  26. Perez-Mongiovi, D., Beckhelling, C., Chang, P., Ford, C.C. & Houliston, E. J. Cell Biol. 150, 963–974 (2000).

    Article  CAS  Google Scholar 

  27. Picard, A., Karsenti, E., Dabauvalle, M. & Doree, M. Nature 327, 170–172 (1987).

    Article  CAS  Google Scholar 

  28. Hinchcliffe, E.H., Miller, F.J., Cham, M., Khodjakov, A. & Sluder, G. Science 291, 1547–1550 (2001).

    Article  CAS  Google Scholar 

  29. Peter, M. et al. EMBO Reports 3, 551–556 (2002).

    Article  CAS  Google Scholar 

  30. Bridge, A.J., Morphew, M., Bartlett, R. & Hagan, I.M. Genes Dev. 12, 927–942 (1998).

    Article  CAS  Google Scholar 

  31. Grallert, A. & Hagan, I.M. EMBO J. 21, 3096–3107 (2002).

    Article  CAS  Google Scholar 

  32. Pines, J. & Hunter, T. Cell 58, 833–846 (1989).

    Article  CAS  Google Scholar 

  33. Lindon, C., Albagli, O., Domeyne, P., Montarras, D. & Pinset, C. Mol. Cell Biol. 20, 8923–8932 (2000).

    Article  CAS  Google Scholar 

  34. Krude, T., Jackman, M.R., Pines, J.N. & Laskey, R.A. Cell 87, 109–119 (1997).

    Article  Google Scholar 

  35. Kumagai, A. & Dunphy, W.G. Science 273, 1377–1380 (1996).

    Article  CAS  Google Scholar 

  36. Boyle, W.J., van der Geer, P. & Hunter, T. in Methods Enzymol. (eds Hunter, T. & Sefton, B.M.) 110–149 (Academic Press, San Diego, 1991).

    Google Scholar 

Download references

Acknowledgements

We are indebted to C. Broad for help with the cell culture. We are grateful to S. Kornbluth for discussing results before publication, to J. Gannon and T. Hunt for anti-Cdk1 antibodies, and K. Lee and R. Erikson (Havard, USA) for the Plk1 baculovirus. We thank E. Nishida (Kyoto, Japan) for sending us anti-phospho-Ser 147 serum. This work was supported by a Wellcome Trust Training Fellowship to CL, by the Association for International Cancer Research [AICR], and by a programme grant to JP from Cancer Research UK (CRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon Pines.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Figure S1 S126-P antibody staining focuses at centrosomes. (PDF 470 kb)

Figure S2 PLK1 preferentially phosphorylates S133 and not S147 in cyclin B1

Figure S3 Plk1 accumulates in the nucleus at prophase before cyclin B1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackman, M., Lindon, C., Nigg, E. et al. Active cyclin B1–Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5, 143–148 (2003). https://doi.org/10.1038/ncb918

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing