Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A grossly warped nanographene and the consequences of multiple odd-membered-ring defects

Subjects

Abstract

Graphite, the most stable form of elemental carbon, consists of pure carbon sheets stacked upon one another like reams of paper. Individual sheets, known as graphene, prefer planar geometries as a consequence of the hexagonal honeycomb-like arrangements of trigonal carbon atoms that comprise their two-dimensional networks. Defects in the form of non-hexagonal rings in such networks cause distortions away from planarity. Herein we report an extreme example of this phenomenon. A 26-ring C80H30 nanographene that incorporates five seven-membered rings and one five-membered ring embedded in a hexagonal lattice was synthesized by stepwise chemical methods, isolated, purified and fully characterized spectroscopically. Its grossly warped structure was revealed by single-crystal X-ray crystallography. An independent synthetic route to a freely soluble derivative of this new type of ‘nanocarbon’ is also reported. Experimental data reveal how the properties of such a large graphene subunit are affected by multiple odd-membered-ring defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of 4, its salient properties and three different synthesis methods.
Figure 2: ORTEP images showing the warped structure of the new C80H30 nanographene 4, taken from the X-ray crystal structure.
Figure 3: Conformational flexibility of the grossly warped C80H30 nanographene.
Figure 4: Optical properties of the grossly warped C80H30 nanographene (4) compared to those of a planar PAH of similar size.

Similar content being viewed by others

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  2. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  4. Akasaka, T., Wudl, F. & Nagase, S. (eds) Chemistry of Nanocarbons (Wiley, 2010).

    Book  Google Scholar 

  5. Chen, X., Engle, K. M., Wang, D-H. & Yu, J-Q. Pd(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    Article  CAS  Google Scholar 

  6. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  7. Tsefrikas, V. M. & Scott, L. T. Geodesic polyarenes by flash vacuum pyrolysis. Chem. Rev. 106, 4868–4884 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Scott, L. T. Fragments of fullerenes: novel syntheses, structures, and reactions. Pure Appl. Chem. 68, 291–300 (1996).

    Article  CAS  Google Scholar 

  9. Scott, L. T. et al. Geodesic polyarenes with exposed concave surfaces. Pure Appl. Chem. 71, 209–221 (1999).

    Article  CAS  Google Scholar 

  10. Scott, L. T. Polycyclic aromatic hydrocarbon bowls, baskets, balls, and tubes: challenging targets for chemical synthesis. Polycycl. Aromat. Compd 30, 247–259 (2010).

    Article  CAS  Google Scholar 

  11. Wu, Y-T. & Siegel, J. S. Aromatic molecular-bowl hydrocarbons: synthetic derivatives, their structures, and physical properties. Chem. Rev. 106, 4843–4867 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Sygula, A. & Rabideau, P. W. in Carbon-Rich Compounds (eds Haley, M. M. & Tykwinski, R. R.) 529–565 (Wiley-VCH, 2006).

    Book  Google Scholar 

  13. Mehta, G. & Rao, H. S. P. Synthetic studies directed towards bucky-balls and bucky-bowls. Tetrahedron 54, 13325–13370 (1998).

    Article  CAS  Google Scholar 

  14. Petrukhina, M. A. & Scott, L. T. Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry (Wiley, 2011).

    Book  Google Scholar 

  15. Hirst, E. S. & Jasti, R. Bending benzene: synthesis of [n]cycloparaphenylenes. J. Org. Chem. 77, 10473–10478 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Omachi, H., Segawa, Y. & Itami, K. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takaba, H., Omachi, H., Yamamoto, Y., Bouffard, J. & Itami, K. Selective synthesis of [12]cycloparaphenylene. Angew. Chem. Int. Ed. 48, 6112–6116 (2009).

    Article  CAS  Google Scholar 

  19. Omachi, H., Matsuura, S., Segawa, Y. & Itami, K. A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n,n]single-walled carbon nanotubes. Angew. Chem. Int. Ed. 49, 10202–10205 (2010).

    Article  CAS  Google Scholar 

  20. Ishii, Y. et al. Size-selective synthesis of [9]–[11] and [13]cycloparaphenylenes. Chem. Sci. 3, 2340–2345 (2012).

    Article  CAS  Google Scholar 

  21. Iwamoto, T., Watanabe, Y., Sakamoto, Y-I., Suzuki, T. & Yamago, S. Selective and random syntheses of [n]cycloparaphenylenes (n = 8–13) and size dependence of their electronic properties. J. Am. Chem. Soc. 133, 8354–8361 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Hitosugi, S., Yamasaki, T. & Isobe, H. Bottom-up synthesis and thread-in-bead structures of finite (n,0)-zigzag single-wall carbon nanotubes. J. Am. Chem. Soc. 134, 12442–12445 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Nishiuchi, T., Feng, X., Enkelmann, V., Wagner, M. & Müllen, K. Three-dimensionally arranged cyclic p-hexaphenylbenzene: toward a bottom-up synthesis of size-defined carbon nanotubes. Chem. Eur. J. 18, 16621–16625 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Yagi, A., Segawa, Y. & Itami, K. Synthesis and properties of [9]cyclo-1,4-naphthylene: a π-extended carbon nanoring. J. Am. Chem. Soc. 134, 2962–2965 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Matsui, K., Segawa, S., Namikawa, T., Kamada, K. & Itami, K. Synthesis and properties of all-benzene carbon nanocages: a junction unit of branched carbon nanotubes. Chem. Sci. 4, 84–88 (2013).

    Article  CAS  Google Scholar 

  26. Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nature Chem. http://dx.doi.org/10.1038/nchem.1655 (2013).

  27. Watson, M. D., Fechtenkoetter, A. & Müllen, K. Big is beautiful – ‘aromaticity’ revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101, 1267–1300 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Feng, X., Pisula, W. & Müllen, K. Large polycyclic aromatic hydrocarbons: synthesis and discotic organization. Pure Appl. Chem. 81, 2203–2224 (2009).

    Article  CAS  Google Scholar 

  29. Chen, L., Hernandez, Y., Feng, X. & Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012).

    Article  CAS  Google Scholar 

  30. Scott, L. T. et al. A rational chemical synthesis of C60 . Science 295, 1500–1503 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Scott, L. T. et al. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. J. Am. Chem. Soc. 134, 107–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Mochida, K., Kawasumi, K., Segawa, Y. & Itami, K. Direct arylation of polycyclic aromatic hydrocarbons through palladium catalysis. J. Am. Chem. Soc. 133, 10716–10719 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Eliseeva, M. N. & Scott, L. T. Pushing the Ir-catalyzed C–H polyborylation of aromatic compounds to maximum capacity by exploiting reversibility. J. Am. Chem. Soc. 134, 15169–15172 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Q., Kawasumi, K., Segawa, Y., Itami, K. & Scott, L. T. Palladium-catalyzed C–H activation taken to the limit. Flattening an aromatic bowl by total arylation. J. Am. Chem. Soc. 134, 15664–15667 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Dopper, J. H., Oudman, D. & Wynberg, H. Dehydrogenation of heterohelicenes by a Scholl type reaction. Dehydrohelicenes. J. Org. Chem. 40, 3398–3401 (1975).

    Article  CAS  Google Scholar 

  36. Mughal, E. U. & Kuck, D. Merging tribenzotriquinacene with hexa-peri-hexabenzocoronene: a cycloheptatriene unit generated by Scholl reaction. Chem. Commun. 48, 8880–8882 (2012).

    Article  CAS  Google Scholar 

  37. Pradhan, A., Dechambenoit, P., Bock, H. & Durola, F. Twisted polycyclic arenes by intramolecular Scholl reactions of C3-symmetric precursors. J. Org. Chem. 78, 2266–2274 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Jessup, P. J. & Reiss, J. A. Cyclophanes, V. Biphenylnaphthalenophanes and the synthesis of hexa[7]circulene. Aust. J. Chem. 29, 173–176 (1976).

    Article  CAS  Google Scholar 

  39. Bharat et al. Quadrannulene: a nonclassical fullerene fragment. Angew. Chem. Int. Ed. 49, 399–402 (2010).

    Article  CAS  Google Scholar 

  40. King, R. B. Chemical applications of topology and group theory. 29. Low density polymeric carbon allotropes based on negative curvature structures. J. Phys. Chem. 100, 15096–15104 (1996).

    Article  CAS  Google Scholar 

  41. Kumar, B., Strasser, C. E. & King, B. T. t-Butyl biphenylation of o-dibromoarenes: a route to soluble polycyclic aromatic hydrocarbons. J. Org. Chem. 77, 311–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Seiders, T. J., Baldridge, K. K., Grube, G. H. & Siegel, J. S. Structure/energy correlation of bowl depth and inversion barrier in corannulene derivatives: combined experimental and quantum mechanical analysis. J. Am. Chem. Soc. 123, 517–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Scott, L. T., Hashemi, M. M. & Bratcher, M. S. Corannulene bowl-to-bowl inversion is rapid at room temperature. J. Am. Chem. Soc. 114, 1920–1921 (1992).

    Article  CAS  Google Scholar 

  44. Kapko, V., Drabold, D. A. & Thorpe, M. F. Electronic structure of a realistic model of amorphous graphene. Phys. Status Solidi B 247, 1197–1200 (2010).

    Article  CAS  Google Scholar 

  45. Michl, J. & Thulstrup, E. W. Why is azulene blue and anthracene white? A simple MO picture. Tetrahedron 32, 205–209 (1976).

    Article  CAS  Google Scholar 

  46. Doetz, F., Brand, J. D., Ito, S., Gherghel, L. & Müllen, K. Synthesis of large polycyclic aromatic hydrocarbons: variation of size and periphery. J. Am. Chem. Soc. 122, 7707–7717 (2000).

    Article  CAS  Google Scholar 

  47. Janata, J. et al. Concerning the anion and cation radicals of corannulene. J. Am. Chem. Soc. 89, 3056–3058 (1967).

    Article  CAS  Google Scholar 

  48. Bruno, C. et al. Electrochemical and theoretical investigation of corannulene reduction processes. J. Phys. Chem. B 113, 1954–1962 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, Y. et al. Reversible fullerene electrochemistry: correlation with the HOMO–LUMO energy difference for C60, C70, C76, C78, and C84 . J. Am. Chem. Soc. 117, 7801–7804 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.K. thanks the Japan Society for the Promotion of Science (JSPS) and the Nagoya University Global Center of Excellence Program for fellowships. This research was supported financially by the US National Science Foundation (L.T.S.) and the Funding Program for Next Generation World-Leading Researchers from JSPS (K.I.). We thank Mr T. Fujikawa for conducting the reactions of [6]helicene. K. Tatsumi and Y. Ohki are greatly acknowledged for providing access to their X-ray analysis instruments. We thank S. Yamaguchi, A. Fukazawa and S. Saito for assistance in the photophysical measurements. S. Seki and A. Saeki are acknowledged for measurements and discussion. Calculations were performed using the resources of the Research Center for Computational Science, Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and Q.Z conducted the experiments. Y.S. performed the X-ray crystal structure analysis and DFT calculations. L.T.S. and K.I. conceived the concept and prepared the manuscript with feedback from others.

Corresponding authors

Correspondence to Lawrence T. Scott or Kenichiro Itami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2163 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasumi, K., Zhang, Q., Segawa, Y. et al. A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. Nature Chem 5, 739–744 (2013). https://doi.org/10.1038/nchem.1704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing